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Abstract Wireless sensor networks consist of embedded

devices (sensor nodes), equipped with a low-power radio.

They are used for many applications: from wireless building

automation to e-health applications. However, due to the

limited capabilities of sensor nodes, designing network

protocols for these constrained devices is currently very

challenging. Therefore, this paper presents the IDRA plat-

form: an information driven architecture designed to support

next-generation applications on resource constrained net-

worked objects. IDRA supports simple but useful optimi-

zations at an architectural level. These include support for

cross-protocol interactions, energy efficiency optimizations,

QoS optimizations (packet priorities, dynamic protocol

selection), mobility support and heterogeneous network

support. The paper shows how the development of protocols

is improved by using an architecture which delegates specific

tasks to a central system, decreasing the memory require-

ments of associated network protocols. A thorough experi-

mental performance analysis demonstrates that IDRA is

much more scalable in terms of memory requirements,

energy requirements and processing overhead than tradi-

tional system architectures. Finally, the paper discusses how

the optimizations presented in this paper can be used for the

clean-slate design of architectures for other wireless or wired

network types.
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1 Introduction

1.1 Wireless sensor networks

Wireless sensor networks (WSNs) are traditionally used to

monitor large, often inaccessible, areas. They consist of

many small devices (sensor nodes), which can sample

information from their environment. Often, many sensor

nodes are distributed over a large area, whereby informa-

tion is gathered in a remote sink using multi-hop commu-

nication. As a result, monitoring applications can obtain

very detailed measurements of the monitored environment

[2, 3].

To keep the cost of sensor nodes low, sensor devices are

very simple. They consist of a small microprocessor (typ-

ically with a clock speed of 8MHz or less), a low-power

radio (typically 250 kbps or lower), a sensing device and,

finally, a small battery to power these components. Due to

the limited capabilities of sensor nodes, past WSN research

has mainly focused on the design of simple networking

solutions that minimize the energy requirements.

More recently, WSNs have been used for more

advanced applications such as wireless building automa-

tion, industrial process automation, security monitoring,

disaster intervention and medical interventions. These

applications benefit greatly from the flexibility and low

deployment cost of WSNs. However, these next generation

This article elaborates on the paper ‘An Information Driven Sensornet
Architecture’ [1]. It adds more in-depth descriptions of the proposed

architectural optimizations and adds quantitative analyses for each

discussed technique.

E. De Poorter (&) � E. Troubleyn � I. Moerman � P. Demeester

Department of Information Technology (INTEC),

Ghent University—IBBT, Gaston Crommenlaan 8,

Bus 201, 9050 Ghent, Belgium

e-mail: eli.depoorter@intec.ugent.be

123

Wireless Netw (2011) 17:1423–1440

DOI 10.1007/s11276-011-0356-5



applications impose many network requirements which are

not found in traditional WSNs.

– In addition to point-to-sink traffic, more complex

communication patterns (such as multicast and point-

to-point traffic) must also be supported.

– Many future applications use sensor nodes with very

diverging capabilities [4]. As a result, future WSNs will

become heterogeneous, containing both simple nodes

(such as light switches) and more complex nodes (such

as heating controllers).

– Many commercial applications require mass-produced

sensor nodes which are cheaper and even smaller,

sometimes up-to-the point where sensor nodes can be

implanted. As a result, new ways have to be found to

ensure that network protocols have an even smaller

memory footprint and consume even less energy.

– To provide sufficient end-user support, a WSN must be

easy to update and maintain. Run-time addition of new

services and network protocols should be supported.

– Sensor nodes can be used to monitor objects or persons.

For these applications, mobility should be supported by

the network protocols.

– Finally, Quality-of-Service (QoS) requirements can no

longer be ignored [5]. Medical, security and surveil-

lance applications require that each application has its

own set of specific QoS requirements.

Due to these more and more challenging network

requirements, developing network protocols for WSNs

becomes an increasingly complex issue.

1.2 The need for new architectures

Rather than focusing on the design of optimal network

protocols, we strongly believe that redesigning the system

architecture is a much more promising approach. As stated

by Culler et. al: ‘‘the primary factor currently limiting

progress in sensornets is not any specific technical chal-

lenge but is instead the lack of an overall sensor network

architecture’’ [6]. As such, there is a strong need for new

architectures that inherently cope with the increasingly

challenging network requirements of WSNs. The resulting

architecture should ease the integration of network proto-

cols, should support cross-protocol optimizations and have

a very low implementation complexity to support even

sensor nodes with very limited capabilities. At present,

there is no architecture that supports all of these challenges.

Therefore, this paper presents several architectural

techniques that can be used to (1) reduce the complexity of

developing new network protocols for WSNs, (2) support

advanced network requirements such as QoS and (3) sup-

port heterogeneous networks. For each of the proposed

architectural optimizations, experimental measurements

are given that describe how the network performance is

improved or, alternatively, which performance penalty is

associated with the increase in network flexibility. Finally,

the paper evaluates the performance of a system in which

all these individual optimizations are combined. Based

upon our results, architecture designers should immediately

be able to decide whether or not a certain optimization

technique is suited for their network requirements. With

this goal in mind, we hope that this detailed overview of

the advantages and costs of architectural improvements

will boost interest in architectural design rather than purely

protocol development.

1.3 Remainder of the paper

Section 1 gave an overview of the characteristics of wire-

less sensor networks and discussed how these characteris-

tics complicate the design of applications and network

protocols. Based upon this discussion, IDRA was designed

with three main goals in mind. (1) Section 2 illustrates that

IDRA simplifies the design of network protocols. (2) Next,

Sect. 3 discusses how IDRA is able to support the advanced

network requirements that are needed to enable next gen-

eration applications sensor applications, such as support for

energy efficiency, for diverging application requirements,

QoS and mobility. (3) Finally, Sect. 4 demonstrates that the

resulting architecture can perform efficiently even in

strongly heterogeneous networks. A comprehensive eval-

uation of all the presented techniques and optimizations

discussed in this paper can be found in Sect. 5. Finally,

Sect. 6 compares IDRA with existing architectures for

wireless sensor networks and Sect. 7 concludes the paper.

2 Simplifying network protocols

Currently, implementing a network protocol is time-con-

suming and complex. Besides formulating a fully functional

algorithm, many unrelated issues must be solved. More

specifically, each protocol layer must (1) define a message

format (including header and trailer fields), (2) provide

buffers to temporarily store packets and (3) gather infor-

mation from other nodes. We argue that this approach is

very inefficient. The main responsibility of a network pro-

tocol is to ensure that information is relayed to the correct

destination. It makes no sense that every individual protocol

layer has to bear the burden of gathering information, pro-

viding buffers and implementing header manipulations.

Such functions, which are repeated in each protocol layer,

should be implemented in a single shared library.

In the IDRA architecture, protocol designers have to

consider only the ‘information exchanges’ when imple-

menting a network protocol. Other tasks, such as packet
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creation and buffer provisioning, are delegated to the

architecture. As a result, network protocols are simpler and

require less memory. In effect, the role of a network pro-

tocol is simplified to its 2 main tasks: exchanging infor-

mation and interacting with the relayed information.

2.1 Information exchanges

Network protocols often exchange information with a

remote node. Typical examples of exchanged information

are:

– An application sends measured data values, such as the

‘ROOM_TEMPERATURE’, to a central monitoring

node;

– a clustering protocol sends status information (e.g.

‘ENERGY_REMAINING’) to all neighboring nodes;

– or a routing protocol sends control information (such as

a ‘ROUTE_REQUEST’) to a remote node.

Using our information driven approach, network proto-

cols do not create a new packet to send these types of

information to a remote node. Instead, they rely on the

system to send and receive information. To send information

to a remote node, the protocol hands over an information

parameter to the system, together with the required desti-

nation. The system will transparently create a new packet

and encapsulate the parameter into this packet. Whenever a

packet arrives at its final destination, the system will extract

the information parameters from the packet and will dis-

tribute them to the interested protocols and applications.

The main advantages of transferring the creation of

packets to the system are: (1) the system can ensure that

similar control information is sent only once; (2) multiple

interested network protocols can act upon the same

exchanged information; (3) protocols are simpler since they

do not need to create packets and do not need to interact

with packet buffers; and (4) multiple information parame-

ters can be combined into a single packet, so that the

number of required packets decreases drastically (Sect. 3.1).

2.2 Interacting with packets

Even when the system encapsulates the exchanged infor-

mation in a packet format, network protocols must still

interact with the forwarded packets. Traditionally, protocol

layers do this by associating information with passing

packets in the form of a (fixed size) packet header that

precedes the packet payload. A packet header typically

contains multiple header fields that contain control infor-

mation. As pointed out in [7], this solution is inflexible, since

information that is contained in the headers is not available

for higher layers, which limits cross-layer optimization

possibilities.

In our information driven architecture, protocols are not

tasked with header creation or manipulation. To ensure that

network protocols can interpret all incoming packets, net-

work protocols use a ‘Packet Facade’ (Fig. 1) to interact

with packets. Using this packet facade, protocols can

associate packet attributes with a packet, such as ‘source’,

‘destination’, ‘QoS ID’ or ‘time-to-live’. The protocols do

not require any knowledge about the actual packet structure.

Instead, the packet facade is responsible for the storage and

retrieval of the packet attributes. Added packet attributes

can be interpreted by any network protocol, not only the

protocol that added the attribute. As a result, the protocol

logic and packet representation are effectively decoupled,

and no information is hidden from higher layers.

To correctly store and retrieve packet attributes, the

packet facade should know how each packet is constructed.

This information is stored in packet part descriptors. Packet

part descriptors describe how and where packet attributes

are stored in a header (e.g: the header offset, the byte-

ordering, the number of allocated bits, etc.). Examples of

packet part descriptors are an IEEE 802.15.4 header, an

IEEE 802.11 Wi-Fi header or an IP header.

New packet types can be created by combining multiple

packet part descriptors. A packet type is defined as a unique

sequence of one or more well-defined packet part descrip-

tors. For example, an IEEE 802.15.4 packet part descriptor

can be combined with a 6lowpan packet part descriptor to

create IPv6 compatible packets. To create new packet types,

developers can combine existing packet part descriptors, or

develop new propriety packet part descriptors. Alterna-

tively, a network designer can design a single highly opti-

mized packet part descriptor that efficiently compresses all

packet attributes that are used in his specific network sce-

nario. Finally, it is important to note that network protocols

are not limited to the use of (standardized) packet attributes.

Packet attributes that are not recognized by any of the packet

part descriptors are stored sequentially in the payload using a

type-length-value (TLV) representation.

MAC

Routing

...

Add / read
parameter

Packet
Facade

Select
correct 
packet 
parts

Network
protocols

Fig. 1 Through a packet facade, protocols interact with packets.

Protocols do not require any knowledge about the actual packet

construction
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Using a packet facade to associate attributes with a

packet has the following advantages: (1) protocol devel-

opment is simplified, since there is no need to define

headers or header operations; (2) packet attributes have a

system-wide significance: they can be inspected by the

system or by any other protocol; (3) multiple packet types

can be supported: the transmitted packet type can trans-

parently be changed without any changes to the protocols

(e.g.: 6lowpan, IEEE 802.15.4 or a custom packet).

2.3 A system-wide shared queue

Finally, the system created packets must be stored. Layered

networks use a ‘store-and-process’ approach, wherein each

network layer stores its own packets (Fig. 2a). Each pro-

tocol requires a large enough internal queue to ensure that

all received packets can be stored. Thus, the total amount

of buffer memory increases linearly with the number of

protocol layers.

As part of the simplification process, the IDRA system is

also responsible for storing created and incoming packets.

Arriving packets are stored once in a system-wide shared

queue and remain there until processing is finished

(Fig. 2b). This limits the total number of copy actions in the

IDRA system. Network protocols can interact with any of

the packets from the shared queue using the packet facade.

As stated by several authors [8, 9], the use of a shared,

system-managed queue has several advantages: (1) proto-

cols are simpler and smaller since they do not have to

allocate queue memory; (2) packets do not need to be

copied between protocols, resulting in less processing

overhead; (3) since the queue occupation from all protocols

is averaged, less total queue memory is required; and (4)

monitoring and managing the total number of packets in

the system is simpler.

3 Advanced architectural optimizations

Next generation WSN applications should not only be

energy efficient, but they also require support for QoS and

mobility. Moreover, as sensor networks become increas-

ingly interactive, the application requirements can change

frequently over time. This section discusses how the IDRA

architecture efficiently copes with these next generation

WSN requirements.

These next generation requirements can not be solved by

adapting a single network protocol. On the contrary, effi-

cient support for requirements, such as quality-of-service

or mobility, requires the redesign of several network layers

and requires advanced cross-layer cooperation. In an ideal

situation, these features should be solved in protocols that

are separate from the MAC and routing layer. This way,

developed QoS and mobility solutions can be combined

with any existing routing or MAC protocol. This separation

is only possible when advanced WSN requirements are a

part of the architectural design. It is well known that sup-

porting additional features after the design phase of an

architecture is increasingly difficult. In fact, the lack of

architectural support for energy efficiency, QoS, mobility

and heterogeneity in existing WSN architectures is a major

obstacle that hampers the deployment of many next gen-

eration applications for WSNs.

This section demonstrates how these next generation

applications requirements can be supported at an archi-

tectural level in our information driven system. Thus, our

optimizations can be used to transparently enhance existing

network protocols with a basic form of QoS and mobility.

As a result, it is easier to design advanced QoS and

mobility aware network protocols using the IDRA

architecture.

3.1 Energy efficiency

In contrast to traditional networks, wireless sensor net-

works are typically battery powered. Even with a limited

battery, a sensor network should have an operational life-

time of at least several years without the need for any

manual intervention. In WSNs, most energy is spent when

the radio is active. By periodically turning off the radio, the

network lifetime increases significantly [10]. However, this

approach is only feasible if the number of transmitted

packets is very low. To reduce the number of packet

transmissions, ‘data aggregation’ is often applied, which is

a technique in which multiple measured data values are

combined in a single packet.

Aggregation in WSNs is a well studied research topic

[11, 12], on which many specialized aggregation protocols

have been proposed. However, these are typically highly

optimized for very specific types of traffic flows, and they

often require complex fine-tuning to set-up optimal

aggregation routes. To remedy this, IDRA contains an

in-built aggregation function which can be activated when

no other aggregation protocols are provided. This

Fig. 2 (a) In traditional layered architectures, each network layer

allocates a packet buffer. (b) In a shared queue approach, only one

single, system-wide shared packet buffer is allocated
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aggregation is part of the architecture and is ‘non-intru-

sive’: no fine-tuning of aggregation settings is required and

no additional control messages are sent.

Our main assumption is that not all packet types need to

be forwarded immediately. Control packets generated by

protocols (e.g. routing, power management, status infor-

mation) often have a periodic character. Measurements,

such as temperature or remaining battery power do not vary

a lot between subsequent status updates. Therefore, it is

reasonable to assume that these packets are not very time-

sensitive, and can be delayed for a short amount of time

before being sent.

Whenever a protocol requests the sending of a param-

eter, the protocol also provides information regarding the

maximum delay after which the parameters should be sent.

Before encapsulating the parameters in a packet, the sys-

tem collects the parameters in a central repository, called

the waiting space (Fig. 3). Whenever a packet is relayed

through the node, all information parameters to the same

‘next hop’ or ‘destination’ address are added to the packet.

Delay-tolerant parameters can remain in the waiting space

for up to a per-parameter predefined period of time. If no

data has been relayed within the allowed waiting time, the

system generates a new packet which combines all

parameters that are destined for the same node. To prevent

the end-to-end delay from becoming too high, parameters

are only delayed in the waiting space of the initial node:

packets are not further delayed in intermediate nodes.

In contrast with traditional aggregation protocols, an

architectural approach has three main advantages: (1) both

application level information and network level control

information can be combined, (2) since aggregation is

executed at an architectural level, the aggregation approach

is compatible with any networking protocol, and (3) this

approach does not require any communication overhead

between different nodes.

3.2 Supporting diverging application requirements

Sensor networks are used for increasingly complex appli-

cations, from controlling thermostatic elements to security

and health monitoring applications. These applications have

very diverging network requirements in terms of QoS (reli-

ability, maximum delay, etc.) and network characteristics. In

addition, a sensor network is typically not an independent

entity, but should interact with the outside world. As a result,

network protocols for WSNs are becoming increasingly

complex: they should support QoS requirements, should

interact with a plethora of diverging technologies, and at the

same time remain simple enough to implement on a resource

constrained sensor node.

IDRA uses an alternative approach in which the network

designer is given the option to deploy multiple smaller and

more specialized network protocols on a single node.

Whenever a packet requires processing, the system is

responsible for choosing and activating the most optimal

network protocol (Fig. 4). For example, a single node can

contain: (1) an efficient broadcast protocol for dissemi-

nating information; (2) a data-centric routing protocol for

collecting measured data; (3) a complex routing protocol

that delivers high QoS guarantees for emergency voice

communication; and finally (4) a protocol for routing

packets to an external network. The architecture is able to

dynamically change between these different routing and

MAC protocols at run-time.

Currently, IDRA implements a simple filter-based

solution to select the most optimal network protocol for

each packet. Each IDRA protocol must register itself by

adding one or more filters to the system. These filters

describe the function of the network protocol and indicate

for which packets the protocol is optimized. Consider the

following examples:

– A voice routing protocol adds a filter ‘QoS_label[5’.

All voice packets that require high QoS guarantees will

be routed using this specialized protocol.
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Fig. 4 (a) Using a traditional layered approach, the order and types

of network protocols are fixed. (b) In IDRA, new network protocols

can dynamically be added per application requirement. The most

optimal network protocols are automatically selected by the system
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– A routing protocol implements an efficient broadcast

algorithm. It registers itself using the filter ‘address =

BROADCAST_ADDR’.

Through the packet facade, the system checks if the

attributes of the arriving packets match any of the regis-

tered filters. IDRA selects the network protocol with most

matching filters to process the packet. When no filters

match, a default routing and MAC protocol is chosen.

In layered architectures, network protocols are executed

in a fixed sequence so that each layer can remove the

packet header from incoming packets. In contrast, IDRA

users can specify in which order protocols should be exe-

cuted by defining ‘call sequences’. The default IDRA

implementation contains a simple, deterministic call

sequence that will suffice for most networks. The default

call sequence (management protocol ? routing protocol ?
MAC protocol) mimics very closely the behavior of tra-

ditional layered architectures. However, developers can

define new call sequences to design more flexible systems.

It is possible to execute network protocols in any order, and

even change the execution sequence at run-time. Section 4

discusses how these advanced call sequences can be used

to support heterogeneous networks.

Using this flexible protocol selection approach has

several advantages: (1) smaller protocols that fulfill only a

single function can be used; (2) these smaller protocols are

more suited for resource constrained devices: they are often

more stable and are easier to maintain than monolithic

protocols; (3) the performance of the network can be

optimized by switching between different network proto-

cols, depending on the network circumstances [13].

3.3 Quality-of-service

Before sensor networks can be used for critical and time-

sensitive applications, WSNs should be able to deliver

Quality-Of-Service (QoS) guarantees. IDRA is optimized

for the design of transparent QoS solutions:

– Since all packets are stored in a shared packet queue,

the system can monitor all available packets. As a

result, the QoS module has a clear view on the number

of packets, their current processing state and their

expected delay.

– The QoS module can influence the order in which

packets are processed and which packets should be

transmitted first.

– Through the packet facade, the QoS module can read

and modify the attributes of relayed packets at any

processing stage. This information can be taken into

account for intelligent packet selection and dropping

strategies. Similarly, network protocols can request all

QoS related attributes and act upon them to the best of

their abilities.

– Using dynamic protocol selection, packets with strict

QoS requirements can be processed by specialized

protocols.

– Analyzing which parameters can be aggregated with

relayed packets results in additional processing delay.

Therefore, the QoS module has the option to disable

aggregation for high-priority packets. As a result,

additional delay will only be introduced for low-

priority traffic.

A single QoS module that is part of the IDRA system

has control of all stored packets. By rewriting this module,

new QoS solutions can be implemented. To implement new

QoS logic, an interface is available through which the

following commands can be given to the system:

– drop a specific (low-priority) packet (useful when the

queue is full);

– select which packet should be processed first;

– put the processing of low-priority packets on hold (even

when those packets are currently being processed by a

protocol);

– activate the most suitable network protocol, depending

on the characteristics of each packet;

– indicates which packet should be transmitted first;

– enable or disable aggregation on a per-packet basis.

Together, these commands can be used to design a wide

range of possible QoS solutions. The developed QoS

controller is protocol independent: it can transparently be

combined with any IDRA network protocol. Of course, the

developed QoS solution can also be combined with QoS

aware network protocols for even more sophisticated

results [14]. During the evaluation of IDRA, it will be

demonstrated that these system commands suffice to

transparently add simple QoS features to existing IDRA

protocols.

3.4 Mobility support

Wireless sensor networks are also often used for localiza-

tion or tracking purposes [15]. However, the presence of

mobile nodes has a profound influence on the performance

of the network. Whenever a node moves, all routes that

involve this node have to be set-up again. In addition, the

MAC protocol must ensure that communication is possible

with all new nodes that arrive in the neighborhood.

IDRA provides the following features to facilitate the

design of mobility-aware network protocols.

– A shared neighbor table is provided, which stores

(network) statistics for each neighboring node.

1428 Wireless Netw (2011) 17:1423–1440
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– To discover new (or leaving) sensor nodes, the default

call sequence can easily be extended with a neighbor

discovery protocol (Sect. 3.2), that can be made

responsible for updating the neighbor table and adding

new neighbors

– Whenever a neighbor is removed, all network protocols

are informed about these changes. This way, the

routing protocol knows that it should update all routes

that involve this node.

The added neighbor discovery protocol can be either

active or passive. Active neighbor discovery protocols

regularly broadcasts information to all neighboring nodes.

Newly discovered nodes are added to the neighbor table,

whilst all nodes that do not respond are removed. A passive

neighbor monitoring protocol typically does not exchange

messages. Whenever a packet is received from a node, this

node is added to the neighbor table. When no packets have

been received from a node during a predetermined period,

the neighbor is removed. As a result, passive neighbor

discovery requires less communication overhead, but reacts

more slowly to topology changes.

4 Towards heterogeneous networks

The previous sections presented several optimizations for

(1) simplifying the development of network protocols and

(2) supporting advanced network requirements such as

energy efficiency, dynamic protocol selection, QoS and

mobility. These features are adequate for developing next

generation sensor applications. However, in the long term,

WSNs will become increasingly heterogeneous:

– New, next generation sensor nodes will be added to

existing (legacy) WSNs.

– Advanced wireless sensor networks are often deployed

on hardware with very diverging capabilities: from

light switches to air-conditioning controllers [4, 16].

– Support for interaction with surrounding networks

becomes increasingly important. An example is ‘the

internet of things’ [17], which describes a vision in

which any object is connected to any other object.

As a result, future sensor networks will know a wider

diversity regarding the capabilities of the sensor nodes.

These sensor nodes can differ in terms of:

– node capabilities (diverging memory, processing or

energy provisions);

– communication methods (different network protocols,

packet types or radio technologies).

This section describes how IDRA can be used to facilitate

this transition towards strongly heterogeneous networks.

4.1 Diverging node capabilities

Typical sensor nodes are too simple for complex tasks such

as intrusion detection, equipment tracking or for control-

ling advanced machinery. When additional interaction with

the environment is required, more capable nodes (‘actuator

nodes’) are added to the WSN. These actuator nodes are

sometimes connected to the power grid, and are often

equipped with secondary communication interfaces (e.g.

wired or WiFi).

The availability of more capable nodes is often known at

the design time of the network. As such, the network

protocols can take into account the capabilities of the

available nodes.

1. Non-essential protocols can be omitted from nodes

with little capabilities (Fig. 5). Typical functions that

can be delegated to more capable nodes include data

aggregation, position discovery and mobility detection.

2. In addition, the system can execute simpler protocol

implementations on lightweight nodes. A typical

example is the use of a clustered MAC protocol, in

which advanced nodes (‘clusterheads’) calculate the

optimal slot assignments and distribute these to the less

capable nodes.

To enable such flexible systems, IDRA developers can

design different execution sequences based on the capa-

bilities of each node. By defining custom call sequences,

very flexible systems can be implemented (see Sect. 3.2).

Moreover, in layered architectures, omitting network pro-

tocols can result in conflicts (for example, by not or

incorrectly removing protocol headers). In IDRA, packet
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Fig. 5 Depending on their capabilities, the number of protocols can

be varied
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attributes remain associated with a packet even if network

protocols are omitted at intermediate nodes. This flexibility

ensures that the IDRA architecture is suitable for both high

capacity and low capacity nodes.

4.2 Different communication technologies

Current wireless sensor network typically consist of only a

single network technology. However, new technologies are

constantly being developed and integrated in existing net-

works. These co-located technologies will need to coop-

erate to perform efficiently. By allowing communication

between (co-located) networks the network performance

increases. For example, sensor packets can be routed over a

co-located mesh network to obtain a shorter end-to-end

delay for the WSN (Fig. 6). Connecting different types of

networks can also provide business advantages: when

checking e-mails on a cell phone, rather than using an

expensive 3G network, the cell phone can instead use

bluetooth to connect with a body area network (BAN). The

BAN, in turn, can make a connection with a nearby WiFi

gateway to provide cheap internet access.

The IDRA architecture has several built-in solutions to

enable connectivity between devices that use different

communication technologies. To integrate different net-

works, the following challenges need to be solved:

1. Co-located networks use different packet types. In a

heterogeneous environment, multiple packet types can

transparently reside on the same node at the same time.

To correctly interpret incoming packets (and thus use

the correct packet part descriptors), the packet type

needs to be uniquely identified. The identification task

is part of the IDRA system. To this end, a shared

neighbor table is provided that describes for each

neighbor which packet type is used for communica-

tion. At the moment, this table is configured at

compile-time. In the future, additional identification

methods will be developed and added to the packet

recognition module of IDRA.

2. Co-located networks use different radio technologies.

To allow direct communication between two networks

using different radio technologies, an intermediate node

should be available that contains both types of radio

interfaces. Using IDRA, each radio interface can have

an associated MAC protocol. The shared neighbor table

can be used to specify for each neighbor which MAC

protocol and radio interface should be used. IDRA will

automatically select the correct MAC protocol and send

the packet over the correct radio interface.

3. Co-located networks use the same radio technology

but different MAC protocols. In this situation, multiple

MAC protocols should manage the same radio inter-

face. To prevent conflicts, IDRA implements several

simple algorithms for resolving MAC conflicts (for

example: the radio will only be disabled when all

registered MAC protocols have requested a low power

radio state).

4. Co-located networks use different routing protocols.

Dynamic protocol selection ensures that, depending on

the capabilities of the destination node, the correct

routing protocol is executed. By porting a legacy

routing protocol, MAC protocol and packet type,

IDRA is fully backwards compatible with existing

legacy networks.

IDRA not only supports multiple incoming packet types,

it is also possible to automatically convert outgoing packets

to a different type. Packet conversion occurs only when a

packet must be transmitted to a neighbor that is associated

with a different packet type. The conversion mechanism is

very simple. When packet conversion is required, the

packet facade is first used to create a new packet of the

correct type. Next, the packet facade is used to extract all

Fig. 6 Routing a packet over

multiple co-located network

technologies can result in more

efficient paths with shorter

delays
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packet attributes from the original packet (thus dismantling

the original packet). Finally, the packet facade is used to

add all extracted packet attributes to the newly created

packet. The conversion process is fully transparent for the

network protocols: the network protocols can not distin-

guish the new packet from the original packet.

Together, these features ensure that single hop com-

munication is possible with any co-located device that

shares at least one common communication interface. The

only requirement for communication between two devices

is that the common packet type is known in advance.

Alternatively, a negotiation protocol can be developed to

exchange packet part descriptors between two devices.

4.3 Porting legacy protocols to IDRA

Finally, it is possible to port existing network protocols to

IDRA. Three changes need to be made to the internal logic

of existing network protocols before they can be used in the

IDRA framework. (1) Instead of creating packets to

exchange information, protocols and applications hand over

a parameter to the global aggregation architecture. The

architecture will either create a packet to send the param-

eter, or add the parameter to a passing packet. (2) Protocols

and applications do not inspect the payload of received

packets. Instead, the architecture extracts from received

packets all the parameters that reached their destination and

distributes them to all interested network protocols or

applications. (3) Finally, the protocols should register

themselves to the protocol selector of the IDRA framework.

5 System evaluation

For the performance evaluation of IDRA, the WiLab

wireless sensor test bed [18, 19] was used, which is located

in the IBBT - Ghent University office building in Belgium.

The WiLab test bed consists of 200 TmoteSky sensor

nodes, spread out over 3 floors. By setting the transmis-

sions power of the sensor nodes to an output power of

-15 dBm, packets require 4 to 5 hops to be transmitted

from one side of the building to the opposite side.

The following sections evaluate how each of the tech-

niques described in Sects. 2 and 3 influence the overall

system performance of IDRA. For each of the described

techniques, a thorough qualitative and quantitative analysis

in terms of processing time, memory overhead, throughput

and behavior is provided.

5.1 Evaluation of the aggregation approach

To evaluate the performance of the aggregation approach,

all nodes of the test bed were configured to regularly

broadcast status messages to their neighbors. In addition,

20% of the nodes were used as a source for point-to-point

traffic: they contacted a random other node to which

measured information was sent every 60 seconds. To set-up

routes, the AODV [20] protocol was used. To compensate

for the unreliability of the sensor nodes, the maximum

lifetime of a AODV path is set to 10 minutes, after which a

new path setup is executed. The maximum parameter delay

of the information exchanges was set to 30 seconds.

Figure 7 shows that the resulting number of packet

transmissions reduces by more than a factor two when

architectural aggregation is enabled. The main reason for

this profound reduction of packet transmissions is the fact

that any type of information (both application and network

information) can be combined with information generated

by any other protocol layer.

For a more in-depth comparison of the IDRA aggrega-

tion approach with existing techniques, we refer to [21].

This paper shows that our approach can increase the net-

work lifetime by 30 to 50 percent, depending on the MAC

protocol.

5.2 System processing overhead

Table 1 shows the contribution of each technique to the

average processing delay of a packet. For ease of com-

parison, the results from this section are given in ms as

measured on a 8MHz TMoteSky node. The estimated

number of clock cycles can be derived by multiplying the

resulting milliseconds by 8000. To get these results, the

average execution time that was spent in each module was

measured using the network scenario described in Sect. 5.1.

The results in Table 1 give a broad indication of the con-

tributions of each technique to the total processing
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overhead. Of course, these results depend strongly on the

network topology and the number of information exchan-

ges. Even so, based on these results it is clear that most

processing overhead results from the network protocols

(almost 40%). The IDRA system overhead (almost 30%) is

mainly for copying packets to the shared queue and for

managing timers and tasks. Finally, the flexibility of the

packet facade comes at an overhead of about 15% of the

total processing overhead, which is a little less than 1 ms.

Table 1 can be used by system developers to decide for

each feature whether or not the advantages compensate for

the additional processing overhead. However, even when

all IDRA features are enabled, the processing delay is

about 6 to 7 milliseconds on a TMoteSky sensor node. As

such, the total processing overhead is negligible for most

WSNs, since the duty cycle (sleep period) of typical MAC

protocols for WSNs is typically 200 ms or higher.

5.3 System memory overhead

The memory footprint of the different architectural com-

ponents is shown in Table 2. The entry ‘Other System

Components‘ includes modules for duplicate detection,

print statements and timer management. The full archi-

tecture requires about 27kb ROM and 4 kB RAM memory,

well under the memory limit of most sensor nodes1. As

mentioned in Sect. 2, this larger initial memory cost is

compensated by the smaller size of the IDRA network

protocols.

The memory requirements of the discussed optimiza-

tions are limited. This shows that these techniques can be

used in most typical sensor networks. In addition, for nodes

with lower memory limits, several components can be

disabled.

5.4 Performance of the shared queue

Copying packets from one layer to another causes a sig-

nificant processing overhead. According to [22], multi-hop

throughput in WSNs is limited mainly by the number of

times a packet needs to be copied. On the TMoteSky, the

processing overhead for copying a single packet of

128 bytes corresponds to ± 1530 clock cycles, or 0.19 ms.

Using a shared queue, only two copy actions are required:

one to copy incoming packets from the radio to the queue

and one to copy outgoing packets from the queue to the

radio. In contrast, when using a layered ‘store-and-process’

architecture, packets traverse through each layer twice

(once to remove all headers and once to process the

packet). As a result, resulting processing overhead increa-

ses by twice this amount for each protocol layer.

The optimal size of the shared queue depends on many

factors, such as the average processing delay of the net-

work protocols (including route set-up), the number of

required control messages, the network characteristics and

the application requirements. As an example, Table 3

shows the average number of packet drops for different

buffer sizes. These results were obtained using the data

collection scenario (without aggregation) from Sect. 5.1 on

a single floor with 80 sensor nodes. Not only is the pro-

cessing overhead of a shared queue lower, using a shared

queue is also (1) significantly better in terms of packet

Table 1 Processing overhead

of the different architectural

components of the system

Optimization Avg execution time per packet (ms) Percentage

IDRA system overhead 1.28 20.09

Information management (Sect. 2.1) 0.59 9.26

Packet facade and packet identification (Sect. 2.2) 0.97 15.23

Aggregation (Sect. 3.1) 0.58 9.11

Protocol selection (Sect. 3.2) 0.02 0.31

QoS (Sect. 3.3) 0.51 8.01

Network protocols (CTP & S-MAC) 2.42 37.99

Total overhead 6.37 100

Table 2 Memory footprint (in bytes) of the different architectural

components of the system

Component ROM RAM

Information exchanges (Sect. 2.1) 1,862 353

Shared queue (Sect. 2.3) 1,934 1,858

Packet facade (interpretor) (Sect. 2.2) 806 8

Aggregation (Sect. 3.1) 1,012 58

Protocol selection (Sect. 3.2) 1,564 86

Quality-of-service (Sect. 3.3) 728 4

Radio controller 11,196 493

Other system components 7,016 909

Total 27,118 3,769

1 Due to added functionality and several optimizations, the total

memory requirements differ from those reported in a previous

publication [1].
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drops (for a fixed number of queue entries) and (2) makes it

easier to determine the required number of queue entries.

5.5 Support for traffic streams of different priorities

This section demonstrates that the available QoS com-

mands are sufficient to transparently add simple QoS fea-

tures to existing IDRA protocols. To this end. a simple QoS

module was developed for IDRA that implements the fol-

lowing two rules: (1) when the packet queue is full, the

packet with the lowest priority is dropped; (2) the packets

with the highest priority are always processed and trans-

mitted first.

To evaluate the effectiveness of the available QoS

commands, the simple QoS module was added to a sce-

nario whereby a simple collection tree protocol [23] was

used to collect data. One node was configured as an always

on sink node. The other nodes were generating data packets

every 4 seconds but, due to their sleeping scheme, they

could only transmit a packet every second. This way, an

overloaded network was created where packets had to be

dropped. Two types of traffic were generated, each having

a different priority level. The high priority traffic flow was

generated on only one node, while all the other nodes were

generating a low priority traffic flow. Using the provided

libraries, the implementation of these QoS policies required

only 782 bytes ROM and a processing overhead of 4080

clock cycles (about 0.5 ms on a 8 MHz processor) per

packet. Table 4 shows the end-to-end delay and packet

drop results from the high priority traffic flow compared

with the average of the low priority traffic flows on the

same hop level. The delay and packet loss for the high

priority stream is significantly lower, even though the

network protocols do not support any QoS at all. Thus,

when using IDRA, it is possible to increase the global

network performance by combining protocol-independent

QoS solutions with any network protocol.

5.6 Performance of the packet facade

To decouple the packet structure from the protocol logic,

the IDRA architecture relies on the use of a packet facade.

This section investigates the cost that is incurred by using a

packet facade to update packet attributes.

Table 5 shows the memory requirements that are used

by different packet part descriptors to describe a packet

structure. The table also compares the processing overhead

for creating and manipulating packets with the overhead

for traditional methods (e.g: using fixed C structures). Due

to the low total processing delay, the overhead is expressed

in clock cycles. To measure the packet update overhead, all

packet packet attributes that are recognized by the packet

part (for example: the sender, receiver and packet ID for a

802.15.4 packet part) were updated.

There is a clear correlation between the complexity of a

packet part descriptor and its memory and processing

overhead. For example, the 6lowpan packet part descriptor

requires up to 588 bytes to describe the header structure

and requires about 1300 clock cycles to store the packet

attributes. In contrast, the most simple packet part

descriptor uses a Type-Length-Value (TLV) representation

to sequentially store attributes. This TLV packet part

descriptor requires only 34 bytes ROM and is used to store

packet attributes in the packet payload. This ensures that all

packet attributes can be stored, even when no other packet

part knows how to process a certain packet attribute.

In general, creating a new packet using the packet

facade does not require significantly more processing than

when using more traditional approaches. However, updat-

ing a header through the packet facade can require up to 5

times more processing cycles than directly assigning values

to header fields. To put this into context, in Sect. 3.1, a

packet facade was used in a real-life deployment. As shown

earlier in Table 1, the total overhead of the packet facade is

less than 1 ms per packet, which is much lower than the

overhead of the network protocols themselves. At the cost

of this additional processing overhead, the packet facade

results in significant additional flexibility in terms of packet

construction.

Table 3 Comparing the packet drop ratios (lower is better) for dif-

ferent queue sizes when using a shared queue versus a layered

approach

Total queue

entries

Packet drop

ratio (%)

Shared queue 1 56.4

2 5.6

3 0.1

Layered Routing MAC

1 1 47.8

2 1 46.6

1 2 4.8

2 2 3.7

Table 4 Influence of the QoS module on the average delay and

reliability of packets

No QoS Simple QoS

Avg delay

Low-priority streams 14,69 s 17,59 s

High-priority stream 15,07 s 1,58 s

Avg packet reliability

Low-priority streams 8,90 % 3,76%

High-priority stream 15,67 % 98,22%
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5.7 System throughput

For most WSNs, little emphasis is put on the maximal

throughput of the system. Theoretically, an 802.15.4 net-

work has a maximal physical bitrate of 250 kbit/sec.

However, MAC protocols for sensor networks make heavy

use of duty cycling in the form of sleep schemes. These

sleep schemes create artificial bottlenecks in terms of

throughput, resulting in a maximal throughput which is

typically a factor 10 lower. However, as sensor networks

are increasingly used for more demanding applications,

such as camera surveillance networks, the importance of

the maximum throughput might increase in the future.

Table 6 shows the measured single hop IDRA

throughput for different packet types and payload sizes.

Creating a packet using more advanced packet part

descriptors result in smaller packets, since a higher number

of packet attributes will have a fixed header location.

The theoretical single hop throughput is shown in For-

mula 1. As can be seen, a higher system processing over-

head TIDRA results in a lower effective throughput. In

general, creating and processing a packet with a simple

packet description requires about 6 ms, which results in a

measured throughput of about 167 kbps (without radio

overhead). The use of a more complex 6lowpan packet

type decreases the total packet size and increases the pro-

cessing delay to 7 ms, which corresponds to a measured

throughput of about 143 kbps.

Throughput ¼ PacketSize

TIDRA þ Tradio þ Ttransmission

¼ PacketSize

TIDRA þ Tradio þ PacketSize
Phys:bitrate

ð1Þ

These measurements correspond to an ‘ideal’ radio with

no processing overhead. In practice, the radio controller

also requires CPU cycles. When using a blocking radio, no

calculations can be executed by the CPU while the radio is

transmitting (Tradio). Since the performance of the default

TinyOS radio is very low, IDRA includes an optimized

CC2420 radio controller, which blocks the CPU for only 4

to 6 milliseconds per packet transmission. Table 6 shows

the resulting measured throughput. The combined IDRA

and radio overhead for transmitting a packet is up to 12 ms.

As a result, the resulting maximal throughput is about

95 kbps.

In contrast, the default TinyOS CC2420 radio controller

blocks the CPU for up to 20 ms per packet transmission. In

addition, the maximum throughput is limited to about

50 kbps. When using this default radio, the time required

for sending a packet is significantly larger than the packet

processing time of IDRA, which results in very low

throughputs.

Using Sect. 5.2, it is possible to estimate the cost (in

terms of throughput) of each proposed technique. For

example, as shown in Table 1, disabling QoS and aggre-

gation lowers the processing overhead per packet by 1 ms.

Table 5 Memory footprint (in bytes) and processing overhead (in clock cycles) of the different packet part descriptors

Packet part descriptor ROM

footprint

Header

size

Packet creation overhead Packet update overhead

Traditional

header

Packet part

descriptor

Traditional

header

Packet part

descriptor

Sequential storage (TLV) 34 bytes Variable No equivalent 376 cycles No equivalent ±620 cycles per

update

IEEE 802.15.4 120 bytes 9 bytes 288 cycles 456 cycles 172 cycles 940 cycles

IPv6 396 bytes Variable 604 cycles 640 cycles 232 cycles 884 cycles

6lowpan (HC4 spec.) 588 bytes 13 bytes 1,860 cycles 2,040 cycles 604 cycles 1,276 cycles

Table 6 Measured throughput of the IDRA architecture (all features are enabled)

Packet Part Type Packet size Processing Measured throughput

Payload

(bytes)

Total packet

(bytes)

Overhead

(ms)

IDRA throughput

(kbps)

With blocking

radio (kbps)

With default

TinyOS

radio (kbps)

Sequential storage (TLV) 100 128 6.06 167.64 94.488 37.592

IEEE 802.15.4 100 126 6.75 150.368 84.836 37.592

802.15.4 ? 6lowpan (HC4) 100 122 6.80 143.472 77.104 37.592

Sequential storage (TLV) 10 38 5.86 60.09 40.128 18.74

IEEE 802.15.4 10 36 6.49 46.816 34.504 12.92

802.15.4 ? 6lowpan (HC4) 10 32 6.80 37.632 29.184 9.504
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A decrease of processing time results in an increase of the

throughput. Since the processing time will decrease by

17%, the maximum throughput will increase by a similar

percentage from 167 kbps to 197 kbps. Using similar cal-

culations, the throughput cost for new architectural tech-

niques can be estimated before the actual deployment of

the network.

To summarize, these results show that the maximum

single-hop throughput is currently mainly limited by the

radio controller, rather than the system. The use of a non-

blocking radio controller would almost double the

throughput. Other techniques to increase the throughput

include: the use of a faster radio, increasing the CPU clock

frequency, using simpler packet types or disabling archi-

tectural features such as QoS or aggregation.

5.8 Performance of the network protocols

Section 2 demonstrated that it is easier to design network

protocols for IDRA since packet creation, packet interaction

and buffer provisioning are delegated to the architecture. As

a result, network protocols also require significantly less

memory. This is shown in Tables 7 and 8, where the memory

requirements of typical layered protocols can be compared

to those of different IDRA protocols.

When using a layered architecture, the total memory

consumption increase linearly with the number of network

protocols. Using IDRA requires a significant initial memory

investment (about 12.6 kB ROM and 3.1 kB RAM), but this

initial cost is compensated by the lower memory require-

ments of IDRA protocols. In some cases, the memory

footprint of IDRA network protocols is reduced by up to a

factor 10. This shows that, using IDRA, it is indeed feasible

to combine multiple routing and MAC protocols on a single

node.

6 Related work

This section gives an overview of related existing WSN

architectures.

6.1 A sensor network architecture (SNA)

The sensor network architecture (SNA) [33] is based on

‘functionality’: the authors analyzed thoroughly which

‘functions’ or ‘components’ are often executed by proto-

cols. They provided a modular MAC layer (called ‘SP’) [8]

and a modular routing layer (called ‘NLA’) [6, 34]. A

protocol designer can use the available modules to ‘build’ a

custom network protocol. The components are ‘glued

together’ using a cross-layer database that shares infor-

mation such as a message pool (similar to the ‘shared

queue’), a link estimation table and an extensible neighbor

table. As such, SNA can be regarded a collection of ‘puzzle

pieces’ that can easily be combined to create new network

protocols.

The SNA has several similar goals as IDRA, but differs in

the following ways. (1) Rather than delegating tasks to a

central system, their goal is to enable the quick development

of protocol layers, using the provided components for each

layer. (2) Protocols need to define their own headers and

must encapsulate packets from higher layers. (3) Dynamic

selection between protocols is not supported, and protocols

can not view or reuse each others packet attributes. (4) SNA

has only limited support for energy-efficiency. Since their

system can not extract meaningful parameters from packets,

they combine full packets rather than only the relevant

information. Additionally, they can not aggregate informa-

tion to non-neighboring nodes. (5) Provisions for QoS or

heterogeneity are not supported.

6.2 Mac layer architecture

A similar component-based architecture is the ‘MAC Layer

Architecture’ (MLA) [35]. This architecture provides opti-

mized, reusable components that implement common fea-

tures that are shared by existing MAC protocols. Similar to

the SNA architecture, the main focus of MLA is code

reusability.

Table 7 Memory requirements (in bytes) of typical layered WSN

network protocols

Traditional protocol ROM RAM

MAC TOS2.1 MAC [24] 11,528 320

X-MAC [25] 19,854 876

SCP-MAC [26] 21,372 1,056

Routing Lunar [27] 5,000 1,518

CTP [23] 7,234 1,198

TYMO [28] 11,404 482(?60 per route)

Table 8 Memory requirements (in bytes) of different IDRA network

protocols

IDRA protocol ROM RAM

MAC LPL MAC [29] 822 176

S-MAC [30] 1,126 184

FlexMAC 10,210 858

Routing CTP [23] 712 130

AODV [20] 1,836 158(?7 per route)

HYDRO [31] 1,924 692(?28 per route)

DYMO [32] 5,008 312(?18 per route)
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6.3 The chameleon architecture

The Chameleon architecture [9] is part of the Contiki

operating system [36]. Similar to the packet facade pre-

sented in this paper, the chameleon architecture uses packet

attributes which are transformed into packets by header

transformations modules. The architecture includes exam-

ple header transformation modules for IEEE 802.15.4,

UDP/IP and TCP/IP packets. In addition, an interesting

transformation module is included that automatically cal-

culates the optimal packing of attributes into a packet.

The main differences with the IDRA architecture are the

following. (2) IDRA packet attributes are stored directly at

(and read directly from) the correct header offset, which

results in minimal processing overhead. In contrast, the

Chameleon architecture dismantles every incoming packet

and stores each packet attribute at a separate location. As

such, the Chameleon approach requires additional buffer

spaces and copy operations to process each incoming

packet. (2) The Chameleon header transformation modules

are implemented in the higher network layers above the

MAC protocol. As a result, the MAC header does not profit

from the decoupling of protocol logic and packet structure.

As discussed in Sect. 4.2, IDRA is able to support multiple

packet recognition approaches. (3) The chameleon archi-

tecture provides only a single approach to identify incoming

packets (a unique ‘channel’ identifier which is added to

each transmitted packet). (4) In the Chameleon architecture,

part of the MAC protocol logic needs to be implemented in

the Chameleon header transformation module. As a result,

the chameleon packet structure modules are significantly

larger than the IDRA packet descriptors. (5) No solutions

are provided to support energy efficiency, QoS, mobility or

heterogeneity at an architectural level.

6.4 A declarative sensornet architecture

The declarative sensor network architecture (DSN) [37, 38]

aims to facilitate the programming of sensor nodes, using a

declarative language (called Snlog). This language pro-

vides a high level of abstraction: protocols describe what

the code is doing, but not how it is doing it. Algorithms are

implemented using predicates, tuples, facts and rules.

The compiler represents all this information as tables.

Rules are converted to dataflow plans, using database

operations (Join, Select, Aggregate and Project). Execution

of the dataflow plans is triggered by the associated predi-

cates. Finally, the intermediary operators are compiled into

a nesC program.

DSN is especially suited for recursive protocols, such as

tree construction (which requires only 7 lines of code).

Additionally, protocol interoperability can be supported

using database scheme matching techniques on the packets.

However, the architecture currently has several disadvan-

tages: (1) complex data structures are not supported, (2)

total memory size increases (up to a factor 3) and (3} no

fine grained radio control is supported (which makes the

language unsuited for low-level MAC protocols).

6.5 Modular architectures

One of the limitations of a layered architecture is that it is

difficult to incorporate new cross-layer services, since

interfaces are explicitly embedded in each layer. An

alternative is to completely discard the layered structure.

Instead of using protocol layers, all responsibilities of a

protocol layer are divided over separate modules [7] with a

well-defined function. For example, a complex MAC layer

can be divided into a neighbor management module, a

sleep management module, a channel monitoring module

and a retransmission module.

The use of a modular architecture has several

advantages:

– duplication of functionality is prevented;

– when developing a new network protocol, existing

modules can easily be reused;

– cross-layer information can be exchanged, supporting

the development of energy-efficient protocols;

– depending on the node capabilities or network condi-

tions, it is easy to add or adapt a single module.

IDRA is designed to support both layered, modular or

hybrid approaches. To prevent a large number of depen-

dencies between the different modules, IDRA protocols do

not interact with each other directly. Instead, communica-

tions between modules go through a cross-layer database

repository [39]. To support modular approaches, develop-

ers can define new call sequences (Sect. 3.2) that determine

the order in which the modules should be executed. To

support system-wide (cross-layer) cooperation between

protocols a shared neighbor table and information reposi-

tory is provided. Thus, IDRA is not only specifically

designed to be suitable for both layered and layerless

approaches, IDRA can also be configured for backwards

compatibility with any existing layered or layerless archi-

tecture (see Sect. 4).

6.6 Performance comparison of IDRA with existing

architectures

Giving a performance-based comparison with existing

architectures is not an easy task:

– each related work architecture implements different

functionalities and focuses its evaluation on different

design goals;
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– several of the conceptual architectures still lack a

practical implementation;

– some performance metrics, such as ease-of-use, are

subjective and can not easily be measured;

– finally, the performance metrics used to evaluate the

architectures are often strongly different.

Keeping these limitations in mind, this section aims to

compare the performance of IDRA with the performance of

the architectures discussed in the related work section.

(1) The sensor network architecture (SNA) does not

analyze the architectural behavior, but instead eval-

uates the performance of the implemented network

protocols. The memory requirements of the imple-

mented routing protocols varies from 6140 bytes

ROM and 1862 bytes RAM for MintRoute to

9060 bytes ROM and 1889 bytes RAM for BVR

routing [34]. As shown in Table 8, the memory

requirements of IDRA routing protocols are signifi-

cantly smaller. On the other hand, the processing

overhead of SNA varies from 0.8 ms (for mintrout-

ing) to 3.9 ms (for BVR routing), which is in the

same order of magnitude as the IDRA protocol

overhead. No advanced network requirements, such

as QoS, are evaluated.

(2) The MAC Layer Architecture (MLA) also evaluates

the behavior of several implemented MAC protocols.

According to [35], the typical overhead of a MAC

protocol that uses MLA is about 20kB ROM and 1 kB

RAM. Again, as shown in Table 8, the memory

requirements of IDRA routing protocols are signifi-

cantly smaller (up to a factor 10). The processing

overhead of the MAC protocols is calculated whilst

using sleeping schemes. As such, the delay is in the

order of several 100 milliseconds. No results are

given about the architectural processing overhead.

(3) The header transformation modules from the Chame-

leon architecture [36] have a similar function as the

IDRA packet facade. However, Chameleon header

modules also contain protocol logic. For example, the

UDP/IP module also includes the ARP protocol. The

memory requirements of the Chameleon header

modules vary from 475 bytes for a TLV-representa-

tion to 6042 bytes for the TCP/IP representation.

Since the IDRA packet part descriptors do not contain

any protocol logic, the IDRA header descriptors are

smaller by more than a factor 102. The processing

overhead of the Chameleon header transformation

modules is similar to the packet processing overhead

from IDRA, which is shown in Table 5.

(4) Similar to SNA and MLA, the evaluation of the

declarative network architecture [37, 38] focuses on

protocol behavior, rather than architectural behavior.

According to the paper, the high level of abstraction

offered comes at a high memory cost. For example,

the implemented CTP routing protocol requires

48.8 kB ROM and 3.2 kB RAM, which is more than

the available memory on many sensor nodes.

(5) Finally, no performance comparison can be made

with the heap based architecture from [7] since this

architecture was not implemented in a proof-of-

concept.

To conclude, the performance analysis of existing

architectures mainly focuses on demonstrating that the

architecture can be used to implement new network pro-

tocols. It is unfortunate that these papers do not evaluate

the influence of their design choices: this information

would have been very valuable for designers of future

protocol architectures. However, when comparing the

performance of the implemented network protocols, the

IDRA architecture typically outperforms existing archi-

tectures, even those that offer less functionalities.

7 Conclusions

In this paper, the IDRA architecture was presented and

evaluated. IDRA is designed for next generation sensor

applications, such as e-health, wireless building automa-

tion, asset tracking or emergency rescue operations. These

next generation applications impose very challenging net-

work requirements which are difficult to support on

resource constrained nodes. Since existing traditional lay-

ered architectures are not designed with these constraints in

mind, new and innovative system architectures are

required.

To solve this problem, the IDRA architecture was cre-

ated. This architecture has three main goals: (1) the sim-

plification of network protocols and (2) support for

advanced requirements such as energy efficiency, flexibil-

ity, QoS and mobility at an architectural level and finally

(3) support for an easy transition towards fully heteroge-

neous network environments.

The first goal, the simplification of network protocols, is

realized by delegating common operations to the system.

More specifically, the system is responsible for queue

provisioning, packet generation and all packet interactions.

By providing a separate packet facade for packet interac-

tions, protocols are not tied to a specific packet structure.

2 Even though the IDRA packet part descriptors do not contain

protocol logic, it is possible in IDRA to associate packet-dependent

protocol logic to existing packet types. For example, a ARP protocol

can register itself to be executed before the transmission of a UDP/IP

packet (see Sect. 3.2).
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Thus, IDRA network protocols only worry about

exchanging information. The system is responsible for

managing all information exchanges.

By intelligently manipulating the exchanged informa-

tion, the system can fulfill the second goal: supporting

advanced network requirements for next generation sensor

applications. (1) Energy efficiency is supported by intelli-

gently combining multiple information exchanges in a

single packet. (2) Flexibility is improved since multiple

network protocols can be designed that are optimized for a

specific function. The system will dynamically select the

optimal network protocol on a per-packet base. (3) System

wide quality-of-service (QoS) is enforced by intelligently

managing the shared queue. Moreover, the developed QoS

solutions can transparently be combined with any IDRA

network protocol. And finally, (4) to support mobility, a

shared neighbor table notifies all network protocols of

arriving or leaving nodes.

With regard to the third goal: it was argued that the

IDRA architecture can be used to facilitate a future

transition towards strongly heterogeneous networks. To

cope with different capabilities, network protocols can be

added to a node according to its resources. The system

supports transparent communication with co-located net-

works that use different communication technologies by

intelligently managing multiple radio interfaces and

automatically converting outgoing packets to the correct

packet type.

Finally, the overhead of each of these techniques was

thoroughly evaluated. As part of the evaluation, it was

shown that the built-in aggregation mechanism can more

than double the network lifetime, that the single hop

throughput of our system is up to 4 times higher than the

throughput of the default TinyOS radio implementation

and that IDRA network protocols require significantly

less memory, at the cost of a larger initial architecture

memory cost. Moreover, it was demonstrated that the

processing and memory overhead of each architectural

technique is small enough to be implemented on resource

constrained embedded devices. In addition, to help users

decide which techniques are suitable for their applica-

tions needs, the paper includes detailed overviews that

give a quantitative analysis of the overhead of each

technique.

To conclude this paper, we are convinced that future

applications for WSNs will be very demanding for the

network in terms of flexibility, reliability and adaptivity.

We claim that support for these network requirements

should be part of the architectural design, rather than being

added as an afterthought. As such, innovative architectural

techniques that support these requirements will be indis-

pensable for the successful development of next generation

network architectures.
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