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Abstract

The Internet-of-Things (IoT) represents the third wave of computing inno-
vation and relies on small, cheap and/or energy efficient devices, densely
deployed in various spaces. Automatically managing, updating and upgrad-
ing the software on these devices, particularly the network stacks, with new,
improved functionality is currently a major challenge. In this paper we pro-
pose GITAR, a generic extension for Internet-of-Things architectures, that
enables dynamic application and network level upgrades in an efficient way.
GITAR consists of four design concepts which can be applied to any operating
system running on IoT/M2M devices. The proof of concept implementation
in this paper uses the Contiki OS and the evaluation, based on analytical
and experimental methods, shows that GITAR i) is up to 14% more efficient
in terms of memory usage and ii) has less or similar run-time CPU overhead
as state of the art solutions while offering upgrade functionality down to
the network level and iii) can reuse existing Contiki network protocols for
dynamic updates without requiring modifications to the code.
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1. Introduction

Currently, in the developed world, individuals own a limited number of
wireless devices including a mobile phone, a PC, a tablet, camera and a
TV. The applications running on most of these devices are able to perform
automatic updates to relieve the user from a relatively difficult and time
consuming upgrade process. IoT brings a third wave of computing innova-
tion, following the personal computer and mobile phone wave. The Internet
of Things (IoT) is typically envisioned as the integration of small, cheap
and/or energy efficient wireless radios in everyday objects. Most IoT de-
vices are constrained in terms of processing power and memory storage to
keep the unit price low, as well as in terms of energy since they are typically
battery powered. This trend will lead to a further increase in i) the number
of devices per person and ii) the number of devices per square meter, thereby
introducing the need for efficient upgrade ability and reconfigurability of em-
bedded devices, as recognized by Atzori [1], De Poorter [2], Fortuna [3] and
the ETSI RRS WG 2 [4].

In addition, whereas wireless technologies and standards are changing at
a rapid pace, embedded IoT devices will have a longer lifetime, typically
a decade or more. To cope with such a huge amount of devices, deployed
in rapidly changing wireless environments, we envision the need for update
mechanisms that not only allow new IoT applications, but also allow to down-
load new or updated network functionality, including MAC implementations,
over the air from a repository (similar to an app store). This would, for ex-
ample, allow to switch between a ZigBee [5] and WirelessHART [6] protocol
stack, both of which use the same physical layer.

The most popular wireless sensor network/IoT operating systems, TinyOS [7]
and Contiki [8], were not designed to support such dynamic upgradeable en-
vironments. In these operating systems, while the applications can be altered
using partial code upgrades, altering the network stack can only be achieved
using full firmware upgrades. This approach has several major drawbacks.
i) Distributing a new firmware over-the-air consumes a significant amount of
energy. ii) Extending or modifying large network stacks is time consuming
and error prone. (iii) The lack of code re-usability slows the overall progress
in the area. Other systems, such as SOS [9], allow more modular upgradeabil-
ity but (i) have not been demonstrated to support network stack upgrades,
ii) require modifications to existing network protocols and iii) do not use
standard upgrade mechanisms and file formats.
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In this paper, we claim the following three contributions. The first and
most important contribution of the paper is GITAR, a Generic extension for
Internet of Things ARchitectures that enables run time updates of network
stacks and applications on constrained devices using standard file structures,
tools and methods. GITAR supports position independent dynamic linking
of components at run-time from the application level down to the MAC
layer. The second contribution is a proof of concept implementation that
is fully backwards compatible with the existing Contiki network protocols,
thus extending an already popular IoT solution. The third contribution is
the theoretical and experimental evaluation of the reference implementation
which demonstrates that GITAR (i) is up to 14% more efficient in terms
of memory usage; (ii) has less or the same run-time CPU overhead as the
state of the art while offering beyond state-of-the-art network level upgrade
functionality; and (iii) has a lesser or equal energy cost for deploying the
dynamic components.

The remainder of this paper is organised as follows. First, Section 2 de-
scribes and analyses scenarios in which run-time software upgradeability is
required. Section 3 gives a brief overview of related work. Next, Section 4 de-
scribed the architecture of the proposed system that enables all the scenarios
identified in Section 2. The reference implementation of the architecture is
discussed in Section 5 while Section 6 evaluates the architecture both theo-
retically and experimentally. Finally, Section 7 concludes the paper.

2. Scenarios for (re)programmable wireless networks

Software updates are required in many scenarios and can happen in
different stages over the “lifetime” of a device (e.g. development, test-
ing, deployment, maintenance, etc.). We distinguish three levels at which
(re)programmability is needed: system level, network level and application
level.

2.1. Application level programmability

Application level (re)programmability refers to adding or changing a part
of the program code that implements application functionality such as sensor
reading and measurement compression. Such updates are currently already
supported by major operating systems for constraint devices as further dis-
cussed in section Section 3.
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2.2. Network level programmability

Network level (re)programmability refers to adding or changing a part
of the program code that implements networking functionality, ranging from
media access control (MAC) layer to transport layer. Such re-programmability
is seldom used today since most of the transceivers for constrained devices
feature a black box protocol stack implementation that conforms to one of
the multitude of available standards. This black box cannot be changed
and its performance is often ”best effort” - meaning that if the operating
environment is different from the one it was designed to operate in, it can-
not be adapted. In dynamic environments, IoT devices have to be adap-
tive, thus able to replace their networking functions with new ones avail-
able in app-store like repositories. In order to achieve this, network level
re-programmability should be supported independently of system level and
application level re-programmability.

Network level programmability support will also decrease the develop-
ment cost of IoT/M2M related networking solutions where the commercial
developers will be able to (i) take the open source code implementing network
functionality, (ii) adapt it for commercial purposes subject to license compli-
ance and (iii) quickly deploy, test and evaluate on a real testbed. It will also
significantly reduce the time and effort invested by the research community
to develop new network functionality since there will already be a modular
and re-usable code base to start from. This process is similar to the way
Unix OS development is happening for over 20 years, and web development
is happening in the last 5 years.

2.3. System level programmability

System level (re)programmability refers to adding or changing a part of
the program code that implements basic functionality provided by the con-
straint device. Examples are code fragments that implement timers, sched-
ulers, memory allocation, etc. This code is most commonly part of the core
operating system running on the device. It may also include network and
application functionality, especially when legacy operating systems for sensor
networks are concerned. In the case of future networks of high number/high
density devices, it is expected that the system level code is relatively well
tested and stable, thus needing seldom upgrades.
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2.4. Summary

The need for (re-)programmability in each level can be estimated by con-
sidering the frequency of updates in different scenarios. In Table 1, the fre-
quency of the system, network and application level (re)programmability are
compared using three gradations for the update frequency (Often, Regular
and Seldom). Both pre- and post-deployment scenarios are considered.

Table 1: Quantitative comparison between system, network and application
level for different re-programming scenarios.

Pre-deployment Post-deployment
Level Development Experimentation Additions Updates Extensions

System Often Seldom Seldom Seldom Seldom
Network Often Often Often Often Often

Application Often Regular Often Regular Seldom

Pre-deployment scenarios include each code update that is necessary dur-
ing development (small scale) and experimentation (large scale). Since devel-
opment is an iterative process, the code is continuously updated in all levels.
In large scale experiments, when the code is optimized for deployment, gen-
erally more fine-tuning is required in the network level. This is because
applications are less complex and system level code is re-used in many cases.
Partial code updates are not essential to support programmability in pre-
deployment scenarios. Nevertheless, they can speed-up the experimentation
process significantly because a firmware update and device reboot can be
avoided.

Post-deployment, firmware updates cause a significant amount of over-
head (in terms of energy consumption, downtime, ...) compared to partial
code updates. The core system functionality should at this stage be based on
well-tested and stable source code, thus only sporadic changes are required.
Much like mobile applications today, IoT deployments will frequently require
additional applications which will be updated regularly. In many future sce-
narios, especially for constraint devices located in robots, we expect the num-
ber of application upgrades to be smaller than the upgrades of the network
functionality. While the applications are upgraded when additional func-
tionality is added or when bugs are fixed, the network functionality will be
changed when the surrounding environment changes and the device will need
to communicate with other devices using different network functionality.
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Currently, the need for post-deployment updates to the networking pro-
gram code is still small, it will rise when i) the number of devices increases,
ii) legacy devices are combined with newly installed IoT devices and iii) the
developer community becomes larger and more dynamic as is happening to-
day with the development of mobile app. The updates post-deployment will
be triggered by new and improved protocols offering better wireless perfor-
mance, by new requirements, or by the need to integrate new devices.

3. Related work

In general, there are four approaches for performing runtime code updates
in already deployed WSNs: i) existing script languages are ported to WSN
platforms; ii) virtual machine approaches allow the injection of intermediate
code that is interpreted at run-time; iii) full-image based approaches replace
the entire firmware at once; iv) component or module based approaches divide
the firmware of a device in small code blocks that can be added or updated
at runtime. Many of these are inspired by solutions already existing in Unix
and adapted for sensor/actuator devices with limited memory and battery
capabilities. An extensive survey of existing solutions is given in [10], and
below we briefly summarize the first three approaches and look into more
detail in the fourth that is more relevant to our work.

3.1. Script interpreters

Script interpreters allow the execution of a script by interpreting the
statements inside the scripts at run-time. Because of the runtime interpre-
tation, scripts can be added or updated after deployment. Some well-known
scripting languages like Python [11, 12] were already ported to embedded
devices. Also lightweight versions of the Unix bash environment were cre-
ated for WSN platforms in the Contiki shell and in LiteOS [13]. Due to the
string representation of statements, script interpreters require a substantial
amount of memory and CPU overhead. Hence, scripts are not suited for the
low-capability hardware platforms targeted in this paper.

3.2. Virtual machines

Virtual machines use an intermediate code format that contains generic
instructions (i.e. not CPU/machine dependent). The intermediate code is
translated into machine code at run-time by a code-interpreter and then ex-
ecuted. Since intermediate code is written at a higher abstraction level than
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machine code, the program code for a virtual machine is smaller than the
program code for physical machines. Consequently, the size of the code frag-
ments that need to be distributed will also be smaller and hence require less
transmission power. Therefore, many solutions [14, 15, 16, 17, 18] were pro-
posed for wireless sensor networks that provide partial code updates using
virtual machines. However, due to the run-time code interpretation, they
exhibit a significantly higher run-time overhead compared to executing na-
tive machine code. In addition, due to memory constraints, these virtual
machines are highly optimized for specific (niche) applications rather than
being generic to support many application domains. Finally, since the net-
work layer is included in the virtual machines, the scope for updates is always
limited to the application level.

3.3. Image-based approaches

To avoid the high run-time overhead of both virtual machines and script
interpreters, native machine code execution is preferred in scientific litera-
ture. Native machine code can directly be executed by the micro-controller
of the constrained device and does not require interpretation at run-time.
By far the easiest and most used approach for post-deployment code up-
dates replaces the entire image. All source code is compiled into a single
image and installed on each device. If an update is required, a new image
must be compiled and distributed to all nodes. There are many examples
using this approach of which XNP/MNP [19] and Deluge [20] are perhaps
the best known. Because the entire image is reprogrammable, all levels (sys-
tem, network and application) can be updated. Once installed, no run-time
overhead is introduced. Amongst all approaches, the deployment overhead
is the highest since the entire image must be distributed.

To make the update process more efficient, binary differential patching
techniques [21, 22, 23, 24] were proposed that highly reduce the size of the
image that needs to be transferred. Patching techniques are only efficient
in homogeneous networks where each node uses the same image. If this
is not the case, a different patch is generated for each node. The patching
techniques can also be applied on component based solutions as demonstrated
in [25].

3.4. Dynamic loadable native code components

Finally, component or module based approaches divide the firmware of
a device in small code blocks that can be installed after deployment and
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executed directly at runtime. Run-time upgradeable components are typ-
ically compiled and distributed as Executable and Linkable Format (ELF)
objects [26]. An ELF object contains the compiled code and data sections
of a component. During installation, the necessary ROM and RAM mem-
ory must be allocated for these sections. The relative addresses used in the
code and data sections can then be relocated to the correct physical address
offset using the relocation entries also included in ELF file. If the code and
data sections contain undefined symbols (e.g. functions or data defined in
other code blocks), there is also a linking step required in which each unde-
fined symbol is linked to the correct physical address. To enable relocation
and linking, component based solutions always require operating system sup-
port. Hence, in such solutions there is always a static part in the firmware,
commonly referred to as the kernel, and a dynamic, component upgradeable
part. Since the individual components are smaller, the deployment overhead
is lower compared to image based solutions. The disruption is also lower
because this approach does not require a system reboot and therefore state
information can be transferred between updates. Component based solu-
tions can be categorized by the binding model they use. The binding model
defines how code blocks are linked post-deployment to the external function-
ality (functions, shared memory, ..) provided by code blocks already present.
Currently, two models are applied: i) strict binding and ii) loosely coupled
binding.

3.4.1. Strict binding

Probably the best known example of a strict binding model is the dynamic
linker approach in Contiki [27]. This solution allows to add or update ap-
plications. The dynamic linker uses a symbol table that contains all global
symbols in the Contiki system. The symbol table is generated before de-
ployment and cannot be extended afterwards. Because of this, additions and
updates are restricted to the application level. A solution that partially over-
comes this problem is proposed in Dynamic TinyOS [28]. The static symbol
table is replaced with a dynamic symbol table that can be extended. Now
code blocks with unidirectional, outward dependencies can be added on top
of each-other. Due to the strict binding model however, the possible update
scenarios are still limited to the top-level components. In practice, Dynamic
TinyOS also restricts additions and updates to the application level.
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3.4.2. Loosely coupled approach

To overcome this limitation, a loosely coupled approach is required. In
general there are two approaches for realizing loose couplings: i) event based
solutions and ii) indirect function calls.

Event based solutions. Event-based interaction between dynamically loaded
components allows the use of event producers and consumers that are linked
using an event-bus. FiGaRo [29], LooCI [30] and Remora [31] are exam-
ples of event-based systems. They are implemented on top of the standard
Contiki system and network stack. Applications can interact with other ap-
plications through an event bus but still require strict bindings with the
system level. Since event-based solutions use an event bus, they introduce a
non-negligible amount of run-time delay (in the order of milliseconds) that
is not deterministic. They are hence not suited for providing network level
re-programmability.

Indirect function calls. Another possibility is to implement an indirect func-
tion call mechanism that uses jump tables to redirect a function call to the
correct function address. The solutions that use the indirect function call
mechanism are more efficient because they add a limited and deterministic
number of CPU cycles (in the order of microseconds). To redirect function
calls, function pointers are used. When updating a component, the func-
tion pointers to that component used by other components also need to be
updated. Hence only the bindings in other components to that component
require an update.

In SOS [9, 32] the first example of such an approach for WSNs was
demonstrated. Each dynamic SOS module encapsulates its external func-
tions in function control blocks (FCBs). Other modules require a pointer to
the FCBs and rely on the SOS kernel to execute the function pointer call,
introducing a substantial amount of CPU overhead. In Enix [33] and Re-
moWare [34], the function pointers are maintained in a jump table with a
1-to-1 relation between function pointer and function name (or ID). Com-
ponents also delegate the function pointer call to the kernel but with less
overhead.

To reduce the memory usage for the FCBs in SOS and the jump table
in Enix and RemoWare, they combine a strict binding model for using sys-
tem level functionality and a loosely coupled binding model in the dynamic
component level. The combination of both models introduces a fixed mem-
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ory overhead for providing the system functions regardless of the number of
dynamic components.

Therefore Lorien [35] allows to scale the memory overhead with the num-
ber of components, by embedding a jump table in each component. The
jump table is instantiated by the kernel when a component is added and
renewed when components are updated. The size of a component in Lorien
is however drastically increased. Since in Lorien each component can be
updated separately, the overall memory overhead will be much higher.

3.5. Differentiators of GITAR
GITAR is different than the related work in that it overcomes the afore-

mentioned problems by combining several design concepts proposed in the
related work into a generic architecture that can be applied on existing op-
erating systems. More precisely, GITAR:

• Incorporates a loosely coupled binding model inside both the network
and application level, enabling partial code updates of protocols and
applications.

• Proposes an indirect function call mechanism that does not require
source code modifications in existing protocols and applications.

• Maintains the function pointers required by the indirect function calls
in each separate component allowing to scale the overhead with the
number of dynamic components.

• Decreases the dependencies with the system level defining and enforcing
a system level boundary.

• Further reduces the overhead by linking components to components rather
than linking components to individual functions.

The combination of the first 4 contributions is novel for constrained IoT
devices. Moreover, the last contributions is a unique feature when considering
the discussed IoT/M2M landscape that uses devices with limited capacity.

4. Architecture

In this section, a number of design concepts are introduced that are es-
sential for supporting network level (re)programmability. Using these design
concepts, an architecture is proposed that can be applied to existing operat-
ing systems, making them component upgradeable.
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4.1. Design concepts

Separation of concerns: define a clear boundary for the system
level. All partial code update approach utilize a separation between a static
code part and a dynamic code part. The static part, commonly referred to
as the system level, can only be updated by reinstalling the entire firmware.
In the dynamic part, separate code blocks can be added or updated. The
level of upgrade-ability is defined by the functionality that is included in the
system level. In order to achieve the desired level of flexibility (e.g. upgrading
network protocols), the system level boundary must be placed just below the
network protocols (including MAC).

Reduce coupling: use a loosely coupled binding model. In the
dynamic part, there is still a choice between a strict and loosely coupled
binding model. Using a strict binding model, components are linked using
physical memory addresses. This implies that when updating a piece of
code, all access to that code in other components also needs to be updated.
When using a loosely coupled binding model, components can be dynamically
(re-)linked, enabling updates without affecting other components. A loosely
coupled component can only interact indirectly with other components which
necessitates support for redirecting interactions.

Reduce dependencies: restrict interactions by enforcing hard-
ware abstraction. In order to increase the portability of code, most op-
erating systems for constrained devices provide guidelines for implementing
a hardware abstraction strategy. By enforcing the already available hard-
ware abstraction strategy, dependencies between dynamic components and
the system level can be reduced. This will make the update management
of components above the system level much easier. Ideally, the system level
only offers portable (hardware independent) interfaces.

Increase modularity: group common functionality in compo-
nents. In order to support efficient update strategies inside the dynamic
part, there must be a rationale for dividing source code into update-able
code blocks. Generally this is achieved by increasing the modularity of source
code. For this, common functionality must be grouped in components that
have a well-defined interface and implement a coherent set of functions. Since
it must be possible to update single network protocols, the modularity of a
component must also be implemented on a protocol level.

The implementation of each of these design concepts will be discussed in
Section 5.

11



  

4.2. High level architecture overview

Network Protocols

Application

Kernel

Binds

HIL

Hardware Interface Layer

HAL

Hardware Abstraction Layer

SYSTEM BOUNDARY

Object

ObjectDynamic

Component

Level

Static

System

Level

Uses

Binds

Loose Binding Strict Binding

Hardware Independent Interfaces

Uses

Figure 1: High level overview of the proposed architecture. Necessary com-
ponents for upgradeability are depicted using grey boxes. Dynamic compo-
nents use a loosely coupled binding model to interact. This is indicated by
the dashed arrows. The strict bindings with the kernel and inside the system
are depicted using full arrows.

The architecture that follows the above design concepts is illustrated
in Figure 1 and consists of i) a static system level, ii) a dynamic compo-
nent level part and iii) a kernel linking both levels.

System level. The system level only implements device drivers and core OS
functionality. A firmware upgrade is required for updating the system level
as discussed in Section 2.3. In order to reduce dependencies, the system level
is further divided in a hardware abstraction (HAL) and a hardware interface
(HIL) layer.

Kernel level. A clear system level boundary is introduced between the static
system and the dynamic component part by adding a kernel. The role of
the kernel is to bind dynamic components to each other and to system level
functionality at run-time. The kernel is able to get the run-time references
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to existing components because each new component is initially registered in
a database that is part of the kernel. The database also keeps track of the
dependencies between components in order to orchestrate the dependencies
between components in future updates.

Component level. Above the system level, network protocols (or applica-
tions) are grouped in dynamically update-able components (see Sections 2.1
and 2.2) that can only interact indirectly with each other using component
objects (grey boxes in Figure 1). Component objects contain meta-data and
control functions used to enable indirect interactions between different com-
ponents. The meta-data contains empty run-time references to other com-
ponents and is updated by the kernel using the control functions with actual
run-time references. Once the metadata is updated, the component object is
able to redirect a call to any other component (or system level functionality)
without needing the kernel.

There are two types of interactions enabled by the proposed architecture:
loose and strict. The loose interactions (dashed arrows in Figure 1) happen
between two different components or between a component and the system.
This way of incorporating the loose interactions is specific for the proposed
architecture and enables the automatic conversion of static source to dynamic
components. The strict interactions are only used inside the system and
kernel where no partial updates are required.

The required additional functionality of the proposed architecture that
enables partial updates, compared to a static system, is depicted using grey
boxes in Figure 1. It can be seen that only the kernel, that manages the code
updates, and the component objects, that enable the loosely coupled binding
model, are required for updating components.

4.3. Modifications to the standard boot and update process

The architecture introduces overhead in terms of extra actions during the
system boot and update. Figure 2 presents the sequence diagram of the boot-
phase interactions between the kernel, system level and components. The
interactions are numbered sequentially and the grey boxes on the lifelines
indicate the overhead in terms of additional interactions compared standard
systems.

When a device boots, the kernel first initializes the system (1). Then
it transforms system level functionality (i.e. the platform independent in-
terfaces) into HIL component objects and stores them in the database (2).
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Kernel System
Component

Object

Init system (1)

Create and store HIL objects (2)

Start system (3)

Get component object reference (4.1)
For each

pre-installed

component

Store object reference (4.2)

For each

pre-installed

component

Instantiate required bindings (4.3)

Store created bindings (4.4)

Start components (4.5)

Figure 2: Step-by-step overview of the boot phase in the architecture (each
step is numbered and the added functionality is depicted by grey boxes on
the lifelines).

This enables the components in the network and application level to use the
system level indirectly. Finally the system is started (3). After booting the
system level, the kernel initializes the bindings for each pre-installed protocol
and application (4). To this end, the kernel uses the control interface embed-
ded in each component object and requires two iterations over all component
objects. In a first iteration, the kernel retrieves the reference of each compo-
nent object (4.1) and stores it in the database (4.2). In the second iteration,
the component object metadata is used to identify the required bindings and
instantiate them (4.3). The created bindings are registered in order to enable
future updates (4.4). Then the components are started normally (4.5). The
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kernel is only involved at boot-time or when new components are loaded, in
all other cases, the components are executed normally.

Kernel
Component

NEW or 

UPDATE

Component

Object

Get Object Ref (1)

Store reference (2)

Instantiate bindings (3)

Start Component (5)

IF:

UPDATE

For each component that uses the previous version => Renew Bindings (7)

Remove old version of component and object reference (11)

Stop Component (9)

Object

Component

OLD
Object

Store created bindings (4)

Get created bindings to old version (6)

Use component

Release Object  (10)

Store updated bindings (8)

Use (updated) component

Components interact indirectly 

using objects for redirecting.

Figure 3: The interactions between the kernel and components when they are
added or updated. The upper right part illustrates how component interact
indirectly. The grey boxes on the lifelines indicate the interactions required
for applying a loosely coupled binding model.

While the system is running, new component can be added and old ones
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can be updated following the sequence diagram depicted in Figure 3. The
kernel first needs to obtain (1) and store (2) a reference to the embedded
component object. From this reference, it can identify the required bind-
ings and instantiate them in the object (3). Then the created bindings are
stored (4) and the component is started (5). When updating a component
some additional steps are required for renewing the bindings in other compo-
nent objects that use it. First, the kernel searches the database for existing
bindings to the old version of the component (6). Then, these bindings are
renewed using the reference to the new component object (7) and updated
in the database (8). After replacing the bindings, the previous version of the
component can be stopped (9) and the corresponding object can be released
(10). Finally, the kernel can safely remove the old component and all ref-
erences to its object (11). Now, the other components use the new version
instead of the old one.

5. Implementation

This section demonstrates how presented architecture can be applied to
Contiki1, to enable dynamic code updates in the network level while main-
taining backwards compatibility with the existing Contiki network stacks.
The implementation of following design concepts will be discussed: i) loose
coupling, ii) system boundary, iii) hardware abstraction and iv) grouping of
functionality

5.1. Loosely coupled binding model: component objects

As mentioned in Section 4.2, component objects are introduced to enable
loosely coupled interactions in the dynamic component level. A component
object uses indirect functions calls instead of direct function calls to
interact with other components. In order to invoke external functions, indi-
rect function calls use function pointers that can be retrieved and re-assigned
at runtime. In order to implement this efficiently, function pointers are
aggregated on a component level in function pointer arrays included
in the meta-data of each component object. Component objects can invoke
external functions indirectly using a reference to the component object that
provides the function array. The exact structure of a component object is

1The implementation is based on the main Contiki release 2.7 (http://sourceforge.
net/projects/contiki/files/Contiki/).
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illustrated in Figure 4 and includes i) component object definition, ii) object
control functions and iii) component object dependency array.

Component

Object Definition

Component

Object

Dependency

Array

CMP_OBJECT

CMP_INFO

CMP_FUNCTION_ARRAY

OBJECT_CONTROL

REQUIRED_COMPONENTS REQ_CMP A

REQ_CMP B

...

REQ_CMP Z

&GetObjectDef &BindObject &ReleaseObject

&Function1 &Function2 &FunctionN

UID X Version Type

USER_LST_ENTRY

CMP_OBJECT_REF

CMP_INFO UID A Version Type

...

UID X

&CmpObject A

Component Object Meta-Data

A: Dynamic

component

object

&GetReqObjects
Object

Control Functions

Legend NAME

Structure

MEMBER

MEMBER

Structure

Definition

Value

Element
Linked List 

Entry

Element Group:

array or struct

Value Value

Figure 4: Definition of the component objects. A component object con-
tains structures that enable other components to use this component. From
top to bottom: i) component object definition, ii) component object con-
trol functions and iii) component object dependency array. The meta-data
manipulated by the kernel is indicated using grey boxes.

The component object definition consists of meta-data used by other com-
ponents to identify, and interact at run-time with, the component. It first
contains component information such as unique ID (UID), version and type
allowing to identify each version of a component. The UID is a unique hash
value generated using the component string name. To allow access to ex-
ternal functions, the component object also contains a component function
array that holds a function pointer for each external function implemented
by the component.

The object control functions are used by the kernel to (re)-bind a com-
ponent automatically. For this, they implement specific functions such as
GetObject that returns a reference to the component object definition that
can be stored in the database, GetRequiredObjects that returns an array with
the dependencies defined by the component object and used by the kernel
to bind the object, BindObject that triggers the object to instantiate (up-
date) the dependency array and create (renew) the required bindings and
ReleaseObject that triggers the object to release the dependency array.

The component object dependency array is used by the kernel to identify
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and create the required bindings with other components. It consists of the
following parts. First, it stores a copy of the component information used by
the kernel to search the required object references in the database. Second,
it stores a reference to the component object instantiated (updated) by the
kernel after binding. And third, it stores a user list entry that is necessary
for storing the created (renewed) binding in the component database.

Using the object reference of another component, its function pointer
array can be used to call the components external functions indirectly. To
ensure that existing protocols can be reused, a two-phase compilation in the
build system is used. This process automatically generates and embeds
component objects in each component without requiring source
code modifications and replaces external function calls with stub
function calls using stub headers, as explained in Section 5.4.

5.1.1. Component objects and stub headers: an example

The difference between a strict binding model, such as the one used in
standard Contiki, and a loosely coupled binding model that is used in our
architecture, is illustrated in Figure 5 using a simple example in which the
Rime [36] unicast component calls the Rime broadcast component.

When applying a strict binding model (upper part of the figure), unicast
uses the actual memory addresses to make direct calls to the functions imple-
mented by broadcast. The addresses are assigned during linking and cannot
be changed afterwards. This implies that when updating or replacing the
broadcast component, also the unicast component must be updated.

In order to apply a loosely coupled approach (lower part of the figure),
the unicast component includes an automatically generated stub header in
which each function definition is replaced by a stub version with an identical
signature. The stub functions are implemented by the unicast object and
use a refernce to the broadcast object to make indirect function calls. An
indirect function call uses a function pointer that can be changed at runtime.

In the current example, the unicast object will use a reference to the
broadcast object to access the function pointers that correspond to the func-
tions implemented by broadcast. The reference to broadcast is instantiated
by the kernel when unicast was loaded by filling in the corresponding empty
element in the meta-data as discussed in Section 4.2. The kernel hence re-
quires that each component object defines meta-data (see Figure 4) enabling
the kernel to automatically (re-)bind components at run-time.
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Figure 5: An example illustrating the indirect interactions between compo-
nents. The upper part demonstrates a strict binding model (used in Contiki),
the lower part illustrates the proposed loosely coupled binding model. The
additional building blocks are depicted using grey boxes.

5.1.2. Component object and stub headers: benefits and limitations

The use of component objects and stub headers has a number of benefits,
the following three being the most prominent.

i) Limited CPU overhead. Using indirect function calls always introduces
extra execution delay for making a function pointer call instead of a direct
call. The proposed stub functions are able to redirect the function calls in
O(1) complexity using the reference to the component object that imple-
ments the required function. This is much less then the overhead in similar
solutions [9, 32].

ii) Distributed memory overhead. Because each component object defines
its own metadata, the memory requirements scale with the number of com-
ponents. A component database, thus, only needs to hold a reference to the
component object and maintain a dependency list for each component.

iii) Trade-offs between ROM and RAM memory are possible. Because
most of the metadata of a component object is read-only it can be placed in
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ROM or RAM. Since component objects and stub headers are automatically
generated, the build system can let the user choose which type of memory is
allocated.

There are two main constraints to allow the loosely coupled binding model
to be applied without requiring source code modifications.

i) Avoid direct memory access. Since direct memory access cannot be
transformed into indirect memory access, shared memory access needs to
be replaced with getters and setters. In Contiki, shared memory is used
quite often, meaning that 1) in all source code that defines shared memory,
getters and setters need to be provided and 2) in all source code using shared
memory, the access needs to be changed to the provided getters and setters.
This typically should require only minor source code modifications. Note
also that direct memory access is typically considered as a bad programming
habit.

ii) There can be no static dependencies in the system level on the dynamic
component level. This means that there can be no direct references in the
system level to dynamic components, otherwise updating such a component
would require an update in the system level. This sounds straightforward
but in Contiki many such dependencies exist, namely for the sensor device
drivers and network drivers included in netstack. Section 5.4 provides more
details on how this was solved in the current implementation.

5.2. Defining a clear system level boundary: the kernel layer

A second major design concept of the architecture focuses on the system
level boundary. The kernel enforces the system level boundary by restrict-
ing interactions to the hardware independent (HIL) system interfaces and is
essential for enabling a loosely coupled binding model in the dynamic com-
ponent level. Introduced in Section 4.2, the kernel layer is further divided in
i) a component database, ii) a component façade and iii) a system façade as
illustrated in Figure 6.

i) The component façade is responsible for creating bindings between pre-
installed components during the boot-phase and adding (updating) bindings
when a component is added (updated) during run-time. It uses the ob-
ject control functions embedded in each component to (a) obtain the object
reference provided by the component (using the UID); (b) resolve the depen-
dencies with other components; (c) create (update) bindings by instantiating
(updating) the object references required by the component; and (d) release
the bindings when a component is removed.
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Figure 6: The implementation of the kernel requires three blocks: a compo-
nent database, a component façade and a system façade. The extra function-
ality is depicted using grey boxes. The loosely coupled bindings are depicted
using dashed arrows, strict bindings with full dashes.

ii) The system façade creates component objects for all hardware inde-
pendent interfaces provided by the system level and adds the objects in the
component database. This way, system level functionality is available for dy-
namic component linking. By introducing a system façade, the system level
boundary can be enforced transparent for the system level (e.g. no source
code modifications are required in the system level to use the kernel) and
interactions can be restricted to HIL interfaces.

iii) The component database maintains a database to store references to
each component object. Using these component objects references, compo-
nents can interact loosely coupled with each-other and the system level. The
component database includes (a) a fixed sized array with references to HIL
objects and (b) a dynamic array with references to each component object in
the network and application level. The objects from the fixed array provide
access to the static system level functionality in the hardware interface layer
(HIL). The dynamic array also contains a user list for each stored component.
The user list of a component contains the UIDs of all component objects that
use this component. In order to resolving dependencies during component
updates, all the active bindings are stored in the component database.
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5.3. Restrict interactions: use a hardware abstraction strategy

A hardware abstraction strategy is used to restrict interactions in the
system level. This approach supports the kernel in enforcing the system
level boundary, but requires a restructuring of the current Contiki system, as
depicted in Figure 7.
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Figure 7: Overview of the refactored Contiki core, grey boxes denote limita-
tions to the hardware abstraction architecture.

The system level is divided in hardware interface layer (HIL) and a hard-
ware abstraction layer (HAL). The HIL transforms the hardware dependent
interfaces provided by the HAL into HIL interfaces and provides additional
HIL interfaces for core operating system features. The HAL provides the
necessary abstraction for the cpu, platform and chip (e.g. sensors, radios)
functionality. In order to provide network level re-programmability, all net-
working functionality, currently included in the static Contiki core system,
needs to be moved to the dynamic component level. The system level bound-
ary is placed above the remaining Contiki core which includes the much used
process management, timers and libraries like the ELF loader and the con-
tiki file system (CFS). As stated, dynamic components can only use system
level HIL interfaces indirectly, using the HIL objects provided by the kernel.
There can be no dependencies from the system level to the component level.
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In theory, this only requires a small re-structuring of the Contiki core.
Everything in \lib, \sys and \dev with hardware specific interfaces was moved
to either \cpu, \platform or \chips. The former three directories contain
all HIL (hardware interface layer) functionality. The latter three directories
contain all HAL functionality. In practice, applying the hardware abstraction
strategy and removing the network stack from the core system turned out to
be more difficult than expected because there are many hidden dependencies
inside the Contiki system.

The Contiki system initialises and starts all pre-installed network pro-
tocols from the main function and hence contains direct dependencies with
these components. To resolve this, such functionality was moved to the init
function of the component façade.

Some system level functionality is provided through shared memory (e.g.
node address, event ids, sensors, etc ...). Since dynamic components cannot
use direct memory access, getters and/or setters need to be provided. Inside
the system level, direct memory access can still be used.

The sensor and radio device drivers in the Contiki HAL also provide a
HIL-like interface by instantiating a generic driver struct that contains func-
tion pointers to the hardware dependent functions. Again, these use shared
memory which can be resolved by providing getters. The added functions
however, can not be added to the HAL interface but are decoupled and pro-
vided through HIL interfaces. This modification is indicated on the figure by
the grey boxes inside \dev.

Harder to solve was the problem that Contiki requires static dependencies
between the network drivers again using shared memory. This can only be
resolved using major source code modifications to the mac and base network
drivers included by netstack.h. For maintaining backwards compatibility,
these are kept in the system level in the proposed implementation (see grey
boxes in Figure 7). A large amount of networking functionality can however
still be moved to the dynamic component level. This is indicated at the right
side of Figure 7.

It is worth noting that these changes needed to be made only once and
the not impact the design or reuse of other network functionality.

5.4. Group common functionality in components

The final design concept is to group common functionality in components.
These concepts are applied on existing Contiki network protocols and applica-
tions. This is necessary for automatically generating the component objects
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that enable a loosely coupled binding model. In order to demonstrate the
network level (re)programmability, the Contiki Rime stack was chosen. Since
Rime is very modular in design, it is easier to transform the Rime modules
to upgradeable components and to analyse the effect of the design concepts.

In Rime, network functionality is divided in small modules (i.e. prim-
itives) that can be stacked/combined to implement a routing protocol. A
new routing protocol can be created by adding new modules on top of the
existing ones (e.g. tree routing, multihop mesh). In the Contiki OS, all Rime
modules are inside the system level and require strict bindings, thus they can
not be updated separately.
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Figure 8: An overview of the build-system. There are two stages, first source
code is compiled into static objects. Then using the objects and the original
headers, component objects and stub headers are generated.

In the proposed reference implementation the modularity of Rime is fully
exploited. Each Rime module is a loosely coupled dynamic component that
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can be updated separately. The current implementation includes each Rime
module above anonymous broadcast (which works directly above the MAC
driver provided by netstack.h). The current implementation of the build
system allows to transform Rime modules transparently by embedding auto-
generated component objects during compilation. This requires a two phase
compilation process as illustrated in Figure 8. First, the source code is com-
piled into static object files. Based on these object files, component objects
are generated using custom tools. The original headers are transformed into
stub headers. The original directory structure is also maintained to allow
automatic inclusions in the next compilation phase. Second, the source code
is compiled again, now including the stub headers and component object,
resulting in dynamic object files that can be added or updated after de-
ployment. The generation of component objects requires a one-on-one link
between header and source file. Because each Rime module implements a
header with a well defined interface this is not a problem. For systems where
a one-to-one link between header and source file is not available, the build
system can be modified accordingly since this is not a conceptual constraint
of the proposed architecture.

6. Evaluation

This section presents the experimental and analytical evaluation of the
reference implementation of GITAR. To demonstrate the improvements com-
pared to prior art, the results are compared with a standard Contiki [27],
SOS [9] and RemoWare [34]. The remainder of this evaluation section is
structured as follows. i) First, each system is analyzed from a functional
viewpoint in Section 6.1, identifying how dynamic components and interac-
tions are implemented. ii) Next, in Section 6.2, an experimental evaluation
is performed to analyse the memory overhead and the processing overhead
of several network protocols and compare these with the overhead in the
SOS and RemoWare approaches. iii) Third, a mathematical model is created
in Section 6.3 that enables the calculation of the kernel level and dynamic
component overhead in terms of ROM, RAM and processing overhead for
any number of components with a known number of function calls for all dis-
cussed architectures. iv) Finally, the energy cost for deploying the dynamic
components is analysed in Section 6.4.
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6.1. Functional analysis

In this subsection, RemoWare and SOS are analysed from a functional
viewpoint, focusing on three aspects: a) how can dynamic components in-
teract with each-other; b) how can dynamic components interact with the
system level functionality; and c) how can dynamic components be updated.
For each system, a high level overview of this analysis is given in Figure 9.
The figure illustrates how the Blink application interacts dynamically with
the Led component (full black arrows) and how each system adds or updates
a component (dashed arrows). Note that the available examples in both sys-
tems were limited to very simple applications so we had to introduce more
complex function calls to enable a thorough comparison.
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Figure 9: high level overview of the compared systems. The dynamic interac-
tions for making a function call are depicted using full black arrows. Actions
required for updating components are indicated with dashed arrows.

As explained in Section 5.1.1, GITAR does not rely on the kernel to
redirect the dynamic function calls. This is because normal functions are
replaced with stub functions in which the correct function pointer is called.
The function pointer is obtained using the reference of the called component.
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In RemoWare and SOS however, the actual call to the function pointer is
executed by the kernel. For this RemoWare maintains a dynamic invocation
table (DIT) that contains an entry for each dynamic function storing the
function pointers and unique function IDs. In SOS, each dynamic component
provides function control blocks (FCB) for each of the dynamic functions they
implement and requires pointers to FCBs to use dynamic functions provided
by other components. To make a dynamic call, a pointer to the called FCB
is passed to the kernel. This is necessary because SOS mandates that a
component is scheduled before it is called.

In GITAR, system level functionality is also accessed using dynamic func-
tions. As discussed in Section 5.2, the system façade offers HIL objects for
this purpose. Again, this is different in RemoWare and SOS. In RemoWare, a
dynamic link table (DLT) is added to the firmware of each device. This DLT
contains the unique ID and function address of system level functions. SOS
uses a somewhat similar structure (called a jump table) which only contains
function addresses. A unique ID is not necessary since the jump table is
always placed at the same memory offset and the order of functions is always
fixed. Another difference between GITAR and the other systems is that the
HIL objects contain function pointers to the actual system functions while
the DLT and the jump table contain the addresses of wrapper functions.

Updating dynamic components in GITAR requires to update each ref-
erence to that component in other components. This is done by the com-
ponent façade using the information stored in the component database (see
Section 5.2) . A component is linked to both the system level and dynamic
components using component object references. When a component is up-
dated in RemoWare, all the entries in the DIT corresponding to the dynamic
functions provided by that component also need to be updated. No updates
are required in other components. The DLT is used to link components to the
system level by replacing undefined function symbols with correct addresses.
In SOS, a component update requires that all the pointers to the function
control blocks provided by that component are also updated. This is done
by iterating each component in the module bin and checking if the updated
function is used. Since the jump table is always stored in the same order
at the same memory offset, SOS module does not require linking with sys-
tem level functions. Both RemoWare and SOS hence statically link dynamic
components to the system level.
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6.2. Experimental evaluation

The evaluation focuses on three examples that use the Rime network
stack: example-collect, example-mesh and a combination of both example-
collect-mesh. The collect example uses the pro-active tree routing Collect
module which only has a limited number of dynamic components (6) but
incorporates a several dynamic functions (36). The mesh example uses the
re-active mesh routing Mesh module that requires more dynamic components
(9) but implements less dynamic functions (40) relative to the number of
components. To analyse the effects of the architecture on a larger example
they were combined into the collect-mesh example in which both applications
run in parallel. As the three examples are only implemented for Contiki and
GITAR, the evaluation starts from the Blink application that is available in
all four systems, and extends these applications with functional calls of the
same complexity as used in the three Rime examples. This offers an objective
ground for comparing with SOS and RemoWare. Note that the calculated
memory usage of GITAR is a perfect match with the memory usage observed
in the experiments.

The reference implementation of the proposed architecture used Contiki
version 2.7 and was validated on three different msp430-based platforms:
TelosB (F1611 MCU: 8MHz, 48kB ROM, 8kB RAM), Zolertia z1 (F2617
MCU: 16MHz, 92kB ROM, 8kB RAM) and RM090 (f5437 MCU: 18MHz,
256kB ROM, 16kB RAM). All existing Rime modules in /contiki/core/net/rime
and examples in /contiki/examples/rime could be converted automatically
to dynamic modules without requiring source code modifications by using
our adapted build system.

To verify that the kernel and dynamic interactions work, each example
was tested on a small (5 nodes) setup. During these experiments, the CPU
overhead of each dynamic interaction could be logged using a logic analyser
by toggling GPIO-pins. Also the memory usage of each different part in the
proposed architecture could be determined exactly using standard mspgcc-
binutils tools (size, nm and readelf).

6.2.1. Overall memory Footprint

The overall memory usage for implementing the example applications in
the reference implementation of the proposed architecture, SOS, RemoWare
and standard Contiki is depicted in Figure 10. For each example and system,
the memory usage is divided in system level functionality (dark grey), kernel
update support (grey) and the dynamic Rime network level components and
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example applications (light grey). Inside each bar the memory usage is given.
The following conclusions can be made.
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Figure 10: a comparison of the overall memory used in GITAR, RemoWare,
SOS and standard Contiki. The memory usage is divided in: system level
(dark grey), update support (e.g kernel level, grey) and dynamic component
level (light grey).
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i) From the figures it is clear that the ROM and RAM usage of the system
level is always identical for the systems that support dynamic components
(i.e. GITAR, RemoWare and SOS). This can be explained by the fact that
they exclude the network protocols (in this case the Rime modules) and
always implement the same functionality.

ii) In contrast, the ROM and RAM for update support is always less in
GITAR compared to RemoWare and SOS that also support dynamic updates.
The ROM for update support is larger in standard Contiki due to the use of
a very large symbol table method used for supporting dynamic code updates
in only a tiny part of the firmware, the application level. On the other hand
standard Contiki uses less RAM for this purpose.

iii) The ROM and RAM usage of GITAR, RemoWare and SOS for dy-
namic components are comparable. In general, the ROM usage of GITAR
is slightly higher and the RAM usage is only slightly lower in RemoWare.
Of course, in standard Contiki the ROM and RAM usage is lower since only
applications can be updated.

iv) The slightly higher memory usage of GITAR for dynamic components
is more than compensated in the kernel level. Compared to RemoWare, the
ROM (RAM) usage of the GITAR kernel is, on average, 986 (171) bytes
less . For this, GITAR only requires, on average, 167 (135) bytes more in
the dynamic component level. Compared to SOS, the average ROM (RAM)
usage of the GITAR kernel is 4300 (201) bytes lower while the average ROM
used in the dynamic component level is only 177 bytes higher. The average
RAM usage is also 40 bytes lower in GITAR.

Overall, it can be seen that in RemoWare and SOS, the ROM us-
age is 3%, respectively 14% higher and the RAM usage is 1%,
respectively 7% higher compared to our GITAR for providing an
equal level of flexibility. Compared to standard Contiki, 13% less
ROM is required for providing much more flexibility, i.e.dynamic
network level update functionality, at the cost of 6% extra RAM .

6.2.2. Runtime CPU Overhead

Using dynamic functions always results in efficiency overhead in terms
of delay (CPU usage) compared to standard direct calls. This is because
a dynamic invocation requires a function pointer that needs to be obtained
at run-time and is necessary for enabling post-deployment updates in the
network level.
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Figure 11: compares the minimal execution delay (CPU cycles) for a dynamic
function call in Gitar (inline and subroutined) with RemoWare and SOS.
Also the delay for a static call in Contiki is depicted. The function has no
parameters and no return value.

The number of CPU cycles, required in each system, for executing a func-
tion call with zero parameters and no return value is depicted in Figure 11.
It can be seen that the static (direct) call in standard Contiki is the most effi-
cient requiring 5 CPU cycles. In GITAR, a dynamic (indirect) stub function
call requires 11 CPU cycles if it can be in-lined (this is the case when only
1 call to the function is required) or 16 CPU cycles otherwise. In any case,
the former is more efficient, while the latter is equal to the execution delay
of a dynamic call in SOS and requires 2 cycles less then RemoWare. Note
that for the overall results, the delay for scheduling a component in SOS
and the variable delay for copying the function parameters in RemoWare
is not accounted. Overall, GITAR is at least as performant as SOS
and RemoWare in terms of CPU usage, and outperforms them for
in-line function calls.

6.2.3. Detailed evaluation of the kernel level

Whereas the previous sections discussed the total overhead of a protocol
stack, this section investigates in more detail the exact overhead that results
from the kernel design. In each of the compared systems kernel level support
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is necessary for enabling dynamic components to interact with each-other
and with the system level functionality.
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Figure 12: a comparison of the memory usage between GITAR, RemoWare
and SOS. The memory required for the standard Contiki ELF loader and
symbol table are also depicted as a reference. The memory usage is divided
in kernel functionality (dark grey, e.g. the component linker, loader and
runtime engine) and ROM required for providing access to the system level
(light grey).

32



  

A distinction will be made between ROM and RAM overhead of the
kernel. The exact memory usage is depicted on Figure 12.

(i) The kernel ROM requirements are compared in Figure 12a. The ROM
requirements for implementing the kernel logic are depicted in dark grey. The
ROM requirements that correspond with the example protocols are indicated
in light grey. The former (dark grey parts) are determined by compiling each
system, the latter (light grey parts) can be theoretically calculated using the
formulas which will be derived in Section 6.3, together with the parameters
defined in Table A.3. The standard Contiki ROM requirements for the ELF
loader (dark grey) and static symbol table (light grey) are added as a refer-
ence. From the figure it is clear that GITAR (2862 bytes) and RemoWare
(2750 bytes) require significantly less ROM memory than SOS (6018 bytes)
for implementing the kernel logic. This is because the SOS kernel also im-
plements a scheduler similar to the process scheduler provided by Contiki.
Because the SOS linker relies heavily on the SOS scheduler, it could not be
removed from the comparison. The main difference in the kernel logic of
each system is the linker and loader. In GITAR, the standard ELF linker
and loader is used, while the other systems require a custom, more complex,
linker and loader. Another observation that can be made is that the ROM
required for providing system level functionality in GITAR (622 bytes) is
much lower then in both RemoWare (1720 bytes) and SOS (1866 bytes).
This is a direct result of not using a dynamic linking table (RemoWare) or a
system jump table (SOS) for this purpose. Instead, GITAR groups system
level functionality on a component level, drastically reducing the required
memory. Another reason for the lower ROM usage is that in the proposed
architecture no wrappers are required for system functions.

(ii) The RAM requirements for the compared systems in each example
are depicted in Figure 12b and divided in a fixed part (dark grey) required by
the kernel logic and a variable part (light grey) required to enable dynamic
interactions between components and to enable subsequent component up-
dates. In the dark grey part, more RAM is always required by RemoWare (44
bytes) and SOS (268 bytes) compared to GITAR (30 bytes). The additional
overhead of RemoWare and SOS can again be explained by the fact that
they are using a non-standard ELF linker. The much higher RAM usage for
implementing the kernel logic in SOS is anew introduced by the scheduler
which masks the lower variable RAM usage of SOS. More precisely, it is due
to the complex data structures (module stack and heap) used in the sched-
uler that less RAM is needed in the variable part. The higher RAM usage for
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enabling dynamic interactions in RemoWare (average 213 bytes) compared
to GITAR (average 56 bytes) and SOS (average 19 bytes) is introduced by
the dynamic invocation table (DIT), that requires 4 bytes per dynamic func-
tion. In GITAR and SOS, this information is maintained by each component
separately. The higher RAM in GITAR versus SOS is caused by the user list
maintained for each component which allows for a faster update process.

In conclusion, the kernel used by GITAR is significantly more ef-
ficient in terms of ROM/RAM than the one used in comparable ar-
chitecture (RemoWare and SOS respectively), and even compares
favourably in terms of ROM with the default Contiki approach
although in GITAR more flexibility is supported.

6.2.4. Detailed evaluation of the dynamic component level

The added flexibility for the Rime primitives and example applications
comes at a cost. Compared to the static components used in Contiki, more
ROM and RAM is required for the dynamic components in GITAR, Re-
moWare and SOS. Also run-time delay is inserted when using a dynamic,
indirect, function instead of the direct functions used in Contiki.

The ROM and RAM overhead per application and per architecture are
shown in Figure 13. The dark grey part corresponds to the normal memory
requirements in the standard Contiki examples. The light grey part repre-
sents the component overhead required for each of the compared systems. In
the following discussion only the overhead (light grey) introduced by each
system will be analysed.

From the results it can be seen that GITAR introduces slightly more
ROM overhead per component compared with RemoWare and
SOS. This is a consequence of not providing a dynamic invocation table
in the kernel but storing it inside each component, thereby moving the over-
head from kernel to component. Also more ROM is used for accessing system
level functionality through dynamic functions (in RemoWare and SOS static
calls are used for accessing system functions). On average GITAR requires
1521 bytes extra for all dynamic components versus 1354 in RemoWare and
1344 bytes in SOS. However, due to the significantly reduced kernel
overhead, the total ROM usage for the whole system is lower in
GITAR, as illustrated previously in Figure 10a.

When considering the combined RAM overhead for all dynamic compo-
nents, GITAR requires less RAM then SOS. This is mainly because SOS
links components to functions (using function control blocks or FCBs) while
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(a) Overall ROM usage in the dynamic component level.
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Figure 13: overview of the overall ROM and RAM required by the dynamic
components used in each example. The dark grey bars represent the normal
memory usage for the Contiki modules. The light grey illustrates the extra
memory usage, required by the dynamic extensions in GITAR, RemoWare
and SOS.
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in the proposed architecture components are linked to components. Since
the number of components is lower then the number of functions, this is
more efficient and hence GITAR requires on average only 10 RAM bytes
per component while SOS needs 14 bytes. RemoWare also links components
to functions but maintains the information (function IDs and pointers) and
bindings in the kernel and hence does not introduce RAM overhead in the
dynamic components. In the kernel level however, on average 17 bytes per
component is needed by RemoWare. Because GITAR links components
to each-other rather then to functions less RAM is required overall
to enable dynamic bindings.
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Figure 14: illustrates the delay for using dynamic functions in GITAR, Re-
moWare and SOS for different number of function parameters per function
call. For GITAR both the inline and subroutine stub functions are depicted.
For SOS also the actual delay with scheduler is given.

Finally, the use of indirect function call introduces CPU overhead for
each call to an external function. The total CPU overhead depends on the
number of external function calls as well as the number of parameters of each
function call. In Figure 14 the delay for a dynamic function call is shown,
varying the number of parameters nParam from 0 to 10. For GITAR both
the inline and subroutine stub functions are depicted. For SOS, the overhead
with and without the scheduler is given. As indicated before, direct calls are
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always more efficient than indirect, dynamic calls. A direct call requires 5
cycles plus 3 cycles per parameter. The inline stub function only requires
two extra move operations to obtain the correct function pointer resulting
in 11 cycles plus 3 cycles per parameter. The subroutine stub function is
less efficient because an extra call is required to the stub subroutine, adding
another 5 cycles (i.e. 16 cycles + 3 per parameter). This is identical for
SOS if the the scheduling is not accounted (note that scheduling is always
required and intertwined with the indirect call mechanism). If the scheduling
of SOS is also considered, the CPU overhead is drastically higher (97 cycles
plus 3 cycles per parameter). Opposed to the dynamic calls in GITAR and
SOS, RemoWare requires to copy the function parameters twice (6 cycles per
parameter). This explains the steeper slope for the delay of RemoWare. Also
the initial delay is higher (18 cycles).

6.3. Mathematical analysis

Finally, this section will provide mathematical formulas that can be used
to calculate the ROM, RAM and CPU overhead for arbitrary components,
based on the number of external functions and the number of function pa-
rameters. Using these formulas, the experimental results obtained in the
previous section can mathematically be recreated. All formulas are shown in
a very generic form, with Appendix A and Appendix B listing the exact
values that can be used for the different architectures to calculate the kernel
overhead and the component overhead respectively.

6.3.1. Kernel memory overhead

The memory overhead of the kernel is divided in: (a) ROM required for
implementing the kernel logic (BROM

KernelLogic) and exposing system components
(BROM

SysCmp) and functions (BROM
SysFnct); and (b) RAM required for the kernel

logic (BRAM
KernelLogic) and for maintaining dynamic components (BRAM

DynCmp) and
functions (BRAM

DynFnct ). The kernel ROM overhead is fixed and depends on the
number of system level components(nSysCmp) and functions(nSysFnct). The
kernel RAM demands is variable and depends on the number of dynamic
components (nDynCmp) and functions (nDynFnct).

Using the above it is possible to express the kernel ROM and RAM over-
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head using Equations (1a) and (1b) respectively:

bROM
Kernel = BROM

KernelLogic + nSysCmp ×BROM
SysCmp + nSysFnct ×BROM

SysFnct (1a)

bRAM
Kernel = BRAM

KernelLogic + nDynCmp ×BRAM
DynCmp + nDynFnct ×BRAM

DynFnct (1b)

To determine the exact overhead of the kernel, the constants (BMEM
x ) and

the number of variables (nx) in equations Equations (1a) and (1b) need to be
determined. This can be done by analyzing the source code and inspecting
the sizes of each memory object in the compiled binaries for SOS, RemoWare
and GITAR. The constants (BMEM

x ) and parameters nx are defined in Ta-
bles A.2 and A.3 and are discussed in Appendix A. Using these formulas and
parameter values, the exact same overhead values can be derived as shown
in the experiment evaluation section.

6.3.2. Component memory overhead

The memory overhead of a dynamic component is divided in overhead
required for enabling the kernel to link (or bind) the component with other
components or system functionality and overhead introduced per occurrence
of a system or dynamic function call in source code.

The binding memory overhead is further divided in: (a) MEM required
for providing component information (BMEM

DynCmpInfo) and providing dynamic
functions (BMEM

ProvFnct); (b) MEM for using system components(BMEM
ReqSysFnct)

and functions (BMEM
ReqSysCmp); and (c) MEM for using dynamic components

(BMEM
ReqDynCmp) and functions (BMEM

ReqDynFnct ). Note that MEM is used be-
cause sometimes both RAM and or ROM are required. The binding memory
overhead thus depends on the number of provided functions nProvDynFnct,
required system components nReqSysCmp and functions nReqSysFnct, and re-
quired dynamic components nReqDynCmp and functions nReqDynFnct. It can be
expressed as in Equation (2) for ROM memory and Equation (3) for RAM
memory.

bROM
CmpBinding =BROM

DynCmpInfo + nProvDynFnct ×BROM
ProvFnct

+ nReqSysCmp ×BROM
ReqSysCmp + nReqSysFnct ×BROM

ReqSysFnct

+ nReqDynCmp ×BROM
ReqDynCmp + nReqDynFnct ×BROM

ReqDynFnct

(2)
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bRAM
CmpBinding =BRAM

DynCmpInfo + nProvDynFnct ×BRAM
ProvFnct

+ nReqSysCmp ×BRAM
ReqSysCmp + nReqSysFnct ×BRAM

ReqSysFnct

+ nReqDynCmp ×BRAM
ReqDynCmp + nReqDynFnct ×BRAM

ReqDynFcnt

(3)

The overhead introduced by component interactions has to be expressed
differently in our architecture compared with RemoWare and SOS. Our ap-
proach for enabling dynamic function calls uses stub functions and makes no
distinction between system and dynamic calls (a distinction which is present
in the other two architectures). The stub functions do not rely on the kernel
to redirect the call as explained in Section 5.1 and can be inlined to increase
speed at the expense of ROM. The associated overhead is given by Equa-
tion (4) where the ROM for each call to a stub function subroutine is denoted
by BROM

StubCall and to an in-line stub function byBROM
InlineStubCall. The overhead

also depends on the number of calls to subroutine stubfunctions nStubCall and
inline stub functions nInlineStubCall.

bROM
CmpInteraction = nStubCall ×BROM

StubCall + nInlineStubCall ×BROM
InlineStubCall (4)

In Remora and SOS, ROM overhead can be split in (a) ROM per system
call in the source code (BROM

SysCall); and (b) ROM per dynamic call (BROM
DynCall)

and dynamic parameter copy ((BROM
DynCallParam)). The interaction overhead

depends on the number of calls to system functions nSysCall, calls to dynamic
functions nDynCall and parameters per dynamic function nDynParam as shown
in Equation (5).

bROM
CmpInteraction =nSysCall ×BROM

SysCall

+ nDynCall ×BROM
DynCall + nDynParam ×BROM

DynCallParam

(5)

Using equations Equations (2) to (5), it is possible to express the ROM
and RAM overhead of each dynamic component in each of the systems
bROM
DynCmp, b

RAM
DynCmp using Equations (6a) and (6b) respectively:

bROM
DynCmp = bROM

CmpBinding + bROM
CmpInteraction (6a)

bRAM
DynCmp = bRAM

CmpBinding (6b)
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Similarly, the component overhead obtained in Section 6.2.4 can be pro-
duced by using Equations (2) to (5) where the parameters nx and constants
BROM

x are determined again by analysing the source code, object files and
assembler output. The exact values are defined in Tables B.4 and B.5 and
explained in Appendix B. Using these formulas and parameter values, the
exact same overhead values can be derived as shown in the experiment eval-
uation section.

6.3.3. Calculating the CPU overhead

There is also a run-time penalty for using indirect interactions between
dynamic components compared to direct interactions with the system level.
The delay overhead is expressed in CPU cycles. Note that this delay is added
every time an external call is made at run-time. The delay for a direct call
dCPU

DirectCall is expressed in Equation (7a) in terms of the number of parameters
nParam. For simplifying the equations, the return value is also counted as a
parameter. A direct call requires to move all parameters to the stack, call
the external function at the physical address provided and copy the return
value from the stack.

dCPU
DirectCall = DCPU

CALL + nParam ×DCPU
MOV (7a)

dCPU
StubCall = dCPU

DirectCall + DCPU
CALL + 2 ×DCPU

MOV (7b)

dCPU
InlineStubCall = dCPU

DirectCall + 2 ×DCPU
MOV (7c)

dCPU
RemoWare = dCPU

DirectCall + DCPU
CALL + 2 ×DCPU

MOV + nParam ×DCPU
MOV (7d)

dCPU
SOS = dCPU

DirectCall + DCPU
Scheduler + DCPU

CALL + 2 ×DCPU
MOV (7e)

where DCPU
CALL = 5 , DCPU

MOV = 3 , DCPU
Scheduler = 51

An indirect (dynamic) call always requires the overhead of a direct call
plus the overhead to make the call redirection. Since the indirect function call
is implemented differently in each system, different equations are necessary.

The delay overhead (dCPU
StubCall) for a sub-routined stub call in our reference

implementation is given inEquation (7b). Extra delay is added to make a call
DCPU

CALL to the stub subroutine and for moving (DCPU
MOV ) the required object

reference and function pointer to the stack. When the stub function is inlined
(Equation (7c)) only two move operations are required.
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In RemoWare, the delay overhead (Equation (7d)) additionally requires
two move (DCPU

MOV ) operation for the function id and function pointer and
one call operation (DCPU

CALL) to the retrieved function pointer. RemoWare
also requires to move each function parameter again (nParam ×DCPU

MOV ).
In SOS, the dynamic function call delay (Equation (7e)) is identical as

in our sub-routined stub call when only considering the function redirection.
However, since SOS additionally requires to schedule the called component
(DCPU

Scheduler), this also needs to be taken into account.
Finally, it is possible to calculate the CPU run-time overhead per external

function call for using dynamic (indirect) functions in GITAR, RemoWare
and SOS by using Equation (7). Using this formulas, the same overhead
CPU values can be derived as shown in Section 6.2.4.

6.4. Energy usage analysis

The transformation from static to dynamic components employed in GI-
TAR adds extra RAM and ROM bytes. This will also have an influence on
the size of the compiled ELF object file and hence may impact the energy
needed to distribute and install the dynamic components. By analysing the
deployment overhead (e.g. the overhead for distributing and installing the
ELF object files) it is shown that the transformation from static to dynamic
components does not necessarily increase the ELF file size or energy con-
sumption. This is because on one hand, the size of the ELF file will increase
due to the additional ROM/RAM bytes and relocation entries. On the other
hand, the size of the ELF file will decrease because it contains fewer string
symbols in the symbol and string table. The ELF file size will therefore be
higher for some components, and smaller for others.

To evaluate the energy usage during deployment we considered two ex-
amples. First we compare adding or updating the collect application and
corresponding Rime modules in GITAR and Contiki. Then, we compare
adding or updating mesh application and the corresponding Rime modules
in GITAR and Contiki. For each case, we consider the standard ELF file and
two possible ELF file reduction methods available in the literature: SELF
object files [37] used in RemoWare [34] and ELF files compressed with the
Lempel-Ziv algorithm (LZ77) [38, 39]. Another possible compression ap-
proach is represented by compressed ELF (CELF) [27] which replaces the
32-bit ELF headers with 16-bit CELF headers. The SELF files considered in
our evaluation compress CELF files further by removing unused elements in
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the 16- bit CELF headers. We disregard the MELF file format which is SOS
specific and can hence only be used on SOS modules.

By using standard compression techniques available in the literature,
some of which are also used by architectures to which we compare against
such as RemoWare and Contiki, we are able to provide a good estimation
of the trade-off in energy consumption. However a direct comparison with
RemoWare and SOS as done in the previous evaluation subsections is not pos-
sible because the Contiki Rime modules cannot be compiled in RemoWare
or in SOS and hence the actual size of the resulting ELF object files cannot
be determined.

Figure 15 presents the results of our evaluation by comparing the cost
in energy (mJ) to transfer all required ELF object files over a single link
without protocol overhead. The file size and energy costs of each component
is given as appendix in Table C.6 and Table C.7 respectively. The energy
cost was determined using the same method and input data as in [27, 38, 39].
The energy usage was derived by multiplying the number of bytes per file
with the energy required to receive one byte (0.0048 mJ) using the CC2420
transceiver2.
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Figure 15: Comparison of the energy required to receive mesh (or collect)
application and required Rime modules in GITAR and Contiki. The energy
usage is given for three file formats: standard ELF file, the smaller SELF file
and for ELF files compressed with LZ77.

2The CC2420 transceiver is used on both Zolertia Z1 and TMote Sky sensor nodes.
The energy cost per byte was determined experimentally in [27] and also used in [38, 39].
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From Figure 15, it can be seen that: (i) When using standard ELF files
the extra ROM and RAM usage introduced in GITAR is compensated by re-
ducing the size of the string table and symbol table. This is possible because
the symbolic names of undefined symbols (i.e. required functions and vari-
ables) do not need to be included in the ELF file produced by GITAR. (ii)
Using the SELF file format offers a higher ELF object file reduction in GI-
TAR compared to standard Contiki because GITAR ELF object files contain
more relocation entries that can be optimized. Conversely, LZ77 compres-
sion offers higher reduction in standard Contiki because Contiki ELF object
files contain more trailing zeros in the symbol table. (iii) Using a general
purpose compression algorithm achieves a higher energy overhead reduction
compared to SELF files without sacrificing compliance with standard ELF
file format. The drawback is that the update latency will increase due to the
additional decompression step.

In conclusion, the method used in GITAR to transform static
components into dynamic components does not have a negative im-
pact on the energy used during deployment. Moreover, the energy
cost can be further reduced by applying a different ELF file format
(SELF) or using a general (lightweight) compression algorithm like
LZ77.

7. Conclusion

Updating the network stack of constrained devices after deployment is es-
sential for the long-term sustainability and maintainability of IoT networks;
especially when these networks need to support future standards and adapt
to new requirements. This paper proposed a generic architecture that in-
corporates fundamental design concepts for enabling partial code updates in
the network level. The architecture can be applied on existing IoT operating
systems (e.g. Contiki, TinyOS) without requiring major source code mod-
ifications. As a proof-of-concept, the architecture was applied on Contiki
thereby enabling dynamic updates of single Rime modules. The solutions
were implemented and validated on multiple embedded hardware platforms.

The combination of the design concepts proposed in GITAR is essential
for providing such level of re-programmability. Moreover, they also ensure
compatibility with standard tools and existing source code while being more
efficient with respect to the current state-of-the-art as illustrated in the evalu-
ation. Compared to standard Contiki, 13% less ROM is required for allowing

43



  

updates in a much larger portion of the firmware. Using an overhead analy-
sis performed on RemoWare and SOS, two comparable architectures, it was
also demonstrated that GITAR consumes 3% and 14% less ROM and 1%
and 7% less RAM compared to RemoWare and SOS. In addition, mathemat-
ical formulas are provided to calculate the exact overhead of each of these
architectures for other evaluation scenarios.

By extending the build-system with a two-phase compilation process it
was possible to apply most design concepts on Contiki without requiring
source code modifications. The build-system is currently able to automati-
cally transforms static Rime primitives in dynamic components without pro-
ducing larger ELF object files. Because of this, the deployment overhead
of dynamic components will be similar to their static counterparts. In fu-
ture work, the build-system should be further extended and integrated with
more generic management tools. Future versions should also integrate a re-
factored Contiki netstack component which allows to dynamically add and
update protocol layers further extending the level of upgrade-ability.
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Appendix A. Kernel level evaluation constants and parameters

This appendix lists the exact parameter values that can be used for cal-
culating the kernel overhead for the different architectures when using the
formulas derived in Section 6.3. The parameters nx vary for each example
(Collect, Mesh, Collect-Mesh) because in each example a different (subset)
of dynamic components are used. For each example they are listed in Ta-
ble A.3. Since all our examples use the same system level functionality as
base the parameters nSysCmp and nSysFnct are identical in each example.
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Table A.2: Defines the constants BMEM
x used to determine the kernel level

memory overhead in GITAR, RemoWare and SOS.

GITAR

Symbol Size (bytes) Source

BROM
SysCmp 6

2 HIL object ref
2 HIL object UID
2 HIL object function array

BROM
SysF nct 2 2 HIL object function array entry

BRAM
DynCmp 6

2 Dynamic component object ref
4 Dynamic component user list

BRAM
DynF nct 0 0 *stored in component

RemoWare

Symbol Size (bytes) Source

BROM
SysCmp 0 0 *no system component abstraction

BROM
SysF nct 8

2 DLT system function pointer
2 DLT system function ID
4 DLT system function wrapper

BRAM
DynCmp 2 2 Dynamic component reference

BRAM
DynF nct 4

2 DIT dynamic function pointer
2 DIT dynamic function ID

SOS

Symbol Size (bytes) Source

BROM
SysCmp 18

2 SOS system module header ref
16 SOS system module header

BROM
SysF nct 6

2 SOS system jump table entry
4 SOS system function wrapper

BRAM
DynCmp 2 2 SOS dynamic module header ref

BRAM
DynF nct 0 0 *stored in component
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Table A.3: Lists the parameters nx required by the tested examples and used
to determine the kernel level memory overhead in GITAR, RemoWare and
SOS.

mesh collect mesh-collect

nSysCmp 32 32 32
nSysFnct 215 215 215
nDynCmp 9 6 13
nDynFnct 36 40 70

Appendix B. Dynamic component constants and parameters

This appendix lists the exact values that can be used for calculating the
overhead of the components for the different architectures when using the
formulas derived in Section 6.3. The constants BROM

x and BROM
x used in the

component memory model are defined in Table B.4 for each of the compared
methods. In each method, a dynamic component requires a fixed amount of
ROM (BROM

DynCmpInfo) to provide the kernel enough information to bind the
component with other components or the system level.

In GITAR and SOS function pointers are stored in each component, hence
a dynamic component requires ROM BROM

ProvDynFnct for each provided dynamic
function. In RemoWare, the function pointers are stored in the kernel (dy-
namic invocation table).

In GITAR, components are linked using component references. For each
required dynamic component, 6 bytes in ROM (BROM

ReqSysCmp) is needed to
store its information and 6 bytes in RAM (BROM

ReqSysCmp) to store the reference
and an entry for the required component user list.

In contrary, RemoWare and SOS link components on a function level. For
this RemoWare only requires 2 bytes in ROM (BROM

ReqDynFnct) for each required
function ID, needed to retrieve the function pointer in the DIT. SOS requires
8 and 2 bytes in ROM (BROM

ReqDynFnct) and RAM (BRAM
ReqDynFnct) respectively to

store and use the function control blocks.
Since RemoWare and SOS link dynamic components directly to the sys-

tem level no overhead is required for using a system function. In GITAR,
dynamic components also use indirect interactions to call a system function.
For this only 2 bytes in ROM (BROM

ReqSysFnct) and RAM (BMEM
ReqSysFnct) are re-

quired.
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Table B.4: Defines the constants BMEM
x used to determine the RAM and

ROM size of dynamic components in GITAR, RemoWare and SOS.

GITAR RemoWare SOS

Constant (Bytes) ROM RAM ROM RAM ROM RAM

BMEM
DynCmpInfo 8 0 8 0 16 0

BMEM
P rovDynF nct 2 0 0 0 8 0

BMEM
ReqDynCmp 6 6 0 0 0 0

BMEM
ReqDynF nct 0 0 2 0 8 2

BMEM
ReqSysCmp 2 2 0 0 0 0

BMEM
ReqSysF nct 0 0 0 0 0 0

BROM
DynCall n.a. n.a. 8 0 8 0

BROM
DynP aram n.a. n.a. 4 0 0 0

BROM
StubCall 12 0 n.a. n.a. n.a. n.a.

BROM
InlineStubCall 8 0 n.a. n.a. n.a. n.a.

BROM
SysCall n.a. n.a. 0 0 0 0

In RemoWare and SOS, 8 extra ROM bytes ( BROM
DynCall) are required for

making a dynamic call. RemoWare also requires an extra 4 bytes in ROM
(BROM

DynParam) per parameter (or return value) required by the called function
(e.g. parameters need to be passed twice). No overhead is required in ROM
for the system functions.

Since in GITAR stub functions are used, different constants are required.
For each stub function 12 extra bytes in ROM (BROM

StubCall ) are required. If
the stub function can be inlined (e.g. only one call in source code), only 8
ROM bytes (BROM

InlineStubCall ) are required.
The parameters nx are different for each dynamic component and mainly

depends on the number of dependencies and interactions with other compo-
nents or the system level. They are defined in Table B.5.
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Table B.5: Defines the parameters nx for each Rime primitive used to de-
termine the RAM and ROM size of each dynamic component in GITAR,
RemoWare and SOS.

Binding and linking overhead

Component nProvFnct nReqSysCmp nReqSysFnct nReqDynCmp nReqDynFnct

broadcast 3 4 8 0 0
unicast 3 3 5 1 3
ipolite 4 4 11 1 3

netflood 3 3 11 1 4
multihop 4 3 9 1 3

mesh 4 2 5 3 10
route 10 4 13 0 0

route-discovery 3 3 8 3 8
collect 8 10 36 3 17

collect-neighbor 19 5 15 1 5
collect-link-estimate 6 1 0 0 0

example-mesh 0 1 1 1 3
example-collect 0 5 9 1 4

Dynamic function call overhead

Component nSysCall nDynCall nDynCallParam nStubCall nInlineStubCall

broadcast 7 0 0 0 7
unicast 4 3 5 0 7
ipolite 19 4 6 4 10

netflood 17 5 12 5 9
multihop 15 5 10 6 5

mesh 7 13 22 3 12
route 26 0 0 7 6

route-discovery 22 12 29 9 6
collect 138 33 56 27 24

collect-neighbor 35 8 10 9 11
collect-link-estimate 0 0 0 0 0

example-mesh 2 4 7 2 2
example-collect 15 4 12 3 10
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Appendix C. Energy usage analysis input data

This appendix lists the exact file size for each dynamic (static) component
in GITAR (Contiki) after compilation to standard ELF object files, after
tranforming the standard ELF object files to SELF object files and after
compressing the standard ELF files using LZ77. The results are summarized
in Table C.6. The energy required to receive each ELF object file (with or

Table C.6: Comparison of the file sizes in bytes for each dynamic compo-
nent in GITAR and their static counterparts in Contiki. The size of the
uncompressed ELF object file is listed first, then the size after applying the
SELF file format reduction and finally the size using LZ77 compression on
the standard ELF file. The first (second) total row gives the total number of
bytes required to receive when adding collect (mesh) after deployment.

Component
GITAR Contiki

ELF SELF LZ77 ELF SELF LZ77
collect 9280 8592 5737 9780 9479 5706

collect-link-estimate 1488 894 875 1200 820 725
collect-neighbor 3960 3230 2299 3788 3546 2069
example-collect 2204 1661 1343 2236 1838 1251

total 16932 14377 10254 17004 15683 9751
multihop 2008 1348 1238 1988 1503 1149

ipolite 2144 1456 1379 2176 1691 1297
netflood 2024 1353 1300 2120 1619 1261

route 2708 2062 1653 2496 2177 1481
route-discovery 2540 1843 1616 2492 2002 1491

mesh 2040 1320 1331 2132 1618 1272
example-mesh 1704 1100 1025 1568 1080 934

total 15168 10482 9542 14972 11690 8885

without SELF/LZ77 compression) is summarized in Table C.7. The values
listed in the table were obtained by multiplying the number of bytes per file
with the energy required to receive one byte (0.0048 mJ) using the CC2420
transceiver (used on both Zolertia Z1 as TMote Sky).
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Table C.7: Comparison of the energy in mJ needed to receive each compo-
nent over a single link without packet loss and procotol overhead. Again,
the uncompressed ELF file, the SELF file and LZ77 file are considered, this
both for the dynamic modules (GITAR) and their static counterparts (Con-
tiki). The first (second) total row gives the energy required for adding collect
(mesh) after deployment.

Component
GITAR Contiki

ELF SELF LZ77 ELF SELF LZ77
collect 44.544 41.2416 27.70869 46.944 45.4992 27.40371

collect-link-estimate 7.1424 4.2912 4.230193 5.76 3.936 3.484526
collect-neighbor 19.008 15.504 11.10565 18.1824 17.0208 9.938921
example-collect 10.5792 7.9728 6.490012 10.7328 8.8224 6.009859

total 81.2736 69.0096 49.53455 81.6192 75.2784 46.83702
multihop 9.6384 6.4704 5.982657 9.5424 7.2144 5.519726

ipolite 10.2912 6.9888 6.662812 10.4448 8.1168 6.230393
netflood 9.7152 6.4944 6.280257 10.176 7.7712 6.060255

route 12.9984 9.8976 7.984721 11.9808 10.4496 7.11306
route-discovery 12.192 8.8464 7.807121 11.9616 9.6096 7.162391

mesh 9.792 6.336 6.432412 10.2336 7.7664 6.111458
example-mesh 8.1792 5.28 4.953548 7.5264 5.184 4.486395

total 72.8064 50.3136 46.10353 71.8656 56.112 42.68368
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